Problem 4

- (a) $\lim_{x \to 2^{-}} f(x) = 3.$
- (b) $\lim_{x \to 2^+} f(x) = 1.$
- (c) $\lim_{x\to 2}$ doesn't exist because the limit on the left is different from the limit on the right.
- (d) f(2) = 3.
- (e) $\lim_{x\to 4} f(x) = 4$ because the limit from the left and the limit from the right are 4.
- (f) f(4) doesn't exist.

Problem 16

Here is a graph that satisfies the requirementss.

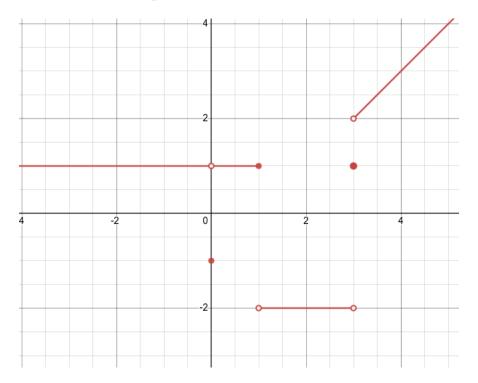


Figure 1: Graph of the function f

We see from the graph that

- f(0) = -1 and f(3) = 1;
- $\lim_{x \to 0} f(x) = 1;$

- $\lim_{x\to 3^-} f(x) = -2;$
- $\lim_{x\to 3^+} f(x) = 2.$

Problem 22

We build a table

x	f(x)
0.500000	131.312500
0.100000	88.410100
0.010000	80.804010
0.001000	80.080040
0.000100	80.008000
-0.500000	48.812500
-0.100000	72.390100
-0.010000	79.203990
-0.001000	79.920040
-0.000100	79.992000

We can guess from the values from the table that

$$\lim_{h \to 0} \frac{(2+h)^5 - 32}{h} = 80.$$

Problem 30

We see that the limit on the numerator is 6 and the limit of the denominator is 0^- meaning that the value approaches 0 from the left. So we have a number divided by a very small negative quantity. We then get

$$\lim_{x \to 5^{-}} \frac{x+1}{x-5} = 6/0^{-} = -\infty.$$

Problem 34

As x approaches 0^- (so x approaches 0 from the left), then x - 1 approaches -1^- (so a number closed to -1 from the left) and x + 2 approaches 2^- (so a number closed to 2 from the left). Therefore, the quotient $(x - 1)/(x^2(x + 2))$ approaches $-1^-/(0^-)^2(2^-) = -\infty$ because we divided by the square of a small negative number (really really close to zero, but negative) which turns out to be a small positive number.

As x approaches 0^+ (so x approaches 0 from the right), then x - 1 approaches -1^+ (so a number closed to -1 from the right) and x + 2 approaches 2^+ (so a number closed to 2 from the left). Therefore, the quotient $(x - 1)/(x^2(x + 2))$ approaches $-1^+/(0^+2^+) = -\infty$ because we divided by the square of a small positive number (really really close to zero, but positive) which turns out to be a small positive number.

Therefore, from the above observations, we conclude that

$$\lim_{x \to 0^{-}} \frac{x-1}{x^2(x+2)} = \lim_{x \to 0^{+}} \frac{x-1}{x^2(x+2)} = -\infty.$$

Problem 38

First, we notice that

$$\frac{x^2 - 2x}{x^2 - 4x + 4} = \frac{x(x-2)}{(x-2)^2} = \frac{x}{(x-2)}.$$

Therefore, we see that, as x approaches 2 from the left, x - 2 will be a small negative number (approaching 0 from the left) and x will approach 2. Therefore,

$$\lim_{x \to 2^{-}} \frac{x}{x-2} = \frac{2}{0^{-}} = -\infty.$$