MATH-241 Pierre-Olivier Parisé
Solutions Section 2-1 Spring 2023

Problem 5

The equation of the tangent line at the point (zg,y0) = (2, —4) is
y+4=m(x—2)
where m = f’(2). The derivative is given by the limit of the different quotient:
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and as h — 0, we get f'(2) = —8. So, we get

y+4=—8(x—2).

[Problem 6|
The equation of the tangent line at (2, 3) is

y—3=r(2)(z-2)
We have to find f/(2). We have f(z) = 2® — 3z + 1, and therefore
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Therefore, we obtain f’(2) = 9. Therefore, the equation of the tangent line is

y=9r —184+3 =9z — 15.



‘ Problem 34 !

The value of f’(a) is given by

f’(a) — lim f(CL—I—h) _f(a’).
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Evaluating f at a + h and at a in this expression, we can do some calculations:
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Therefore, we get f'(a) = —2/a’.

‘ Problem 44 l

The velocity at t = 4 is given by f’(4). This is given by
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Evaluating the last limit with the Quotient Rule, we get f'(4) = —9/5.



| Problem 60|

By definition, we have

f(0+h) — f(0)
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The last limit exists because
—h < hsin(1/h) < h
for any h > 0 and
h < hsin(1/h) < —h
when A < 0. We can simplify this by using the absolute value:
0 < [hsin(1/h)]| < |h]
because 0 < |sin(1/h)| < 1. Using the Squeeze Theorem, we conclude that
}lbiir(l)hsin(l/h) = 0.

Therefore, f'(0) exists and f’(0) = 0.



