Problem 2, (a) and (c)

- (a) We have g(0) = 0, g(1) = 1/2, g(2) = 0, g(3) = -1/2, g(4) = 0, g(5) = 1/2, and g(6) = 1.
- (c) By the FTC part I, we have g'(x) = f(x). We see that g'(x) doesn't exist when x = 2 and x = 6, and is zero at x = 1 and x = 3. Those are the critical points. We can use the closed interval method to find the maximum and minimum value.
 - The maximum value is the $\max\{g(0), g(1), g(2), g(3), g(6)\} = 1$.
 - The minimum value is the min $\{g(0), g(1), g(2), g(3), g(6)\} = -1/2$.

Problem 8

By the Fundamental Theorem of Calculus, we immediately have

$$g'(x) = \cos(x^2).$$

Problem 10

Again, from the Fundamental Theorem of Calculus, we have

$$h'(u) = \frac{\sqrt{t}}{t+1}.$$

Problem 12

Using a property of the integral, we can rewrite R(y) as

$$R(y) = -\int_2^y t^3 \sin(t) dt.$$

Therefore, using the FTC, we obtain

$$R'(y) = -y^3 \sin(y).$$

Problem 14

Write H(x) for $\int_1^x \frac{z^2}{z^4+1} dz$. Then the function h(x) can be rewritten as

$$h(x) = H(\sqrt{x}).$$

From the Chain Rule, we find that $h'(x) = H'(\sqrt{x}) \frac{d}{dx}(\sqrt{x})$. Using the FTC, we know that

$$H'(x) = \frac{x^2}{x^4 + 1}$$

and therefore, we obtain

$$h'(x) = \frac{(\sqrt{x})^2}{(\sqrt{x})^4 + 1} \left(\frac{d}{dx} (\sqrt{x}) \right) = \frac{1}{2\sqrt{x}} \frac{x}{x^2 + 1} = \frac{\sqrt{x}}{2(x^2 + 1)}.$$

Problem 18

We rewrite the expression of y as

$$y = -\int_{1}^{\sin x} \sqrt{1 + t^2} \, dt.$$

Writing $Y(x) = \int_1^x \sqrt{1+t^2} dt$, we can rewrite y as

$$y(x) = Y(\sin(x)).$$

From the Chain Rule, we obtain

$$y'(x) = Y'(\sin(x))\frac{d}{dx}(\sin(x)).$$

Using the FTC, we see that

$$Y'(x) = \sqrt{1 + x^2}$$

and replacing x by $\sin(x)$, we obtain

$$y'(x) = \left(\sqrt{1 + \sin^2(t)}\right)\cos(x)$$

Problem 20

An antiderivative of x^{100} is $x^{101}/101$. Thus, by FTC part 2, we have

$$\left. \int_{-1}^{1} x^{100} \, dx = \left. \frac{x^{101}}{101} \right|_{-1}^{1} = \frac{2}{101}.$$

Problem 22

Using linearity, we have

$$\int_0^1 (1 - 8v^3 + 16v^7) \, dv = \int_0^1 \, dv - 8 \int_0^1 v^3 \, dv + 16 \int_0^1 v^7 \, dv.$$

Using the part 2 of the FTC, we have

$$\int_0^1 (1 - 8v^3 + 16v^7) \, dv = v \Big|_0^1 - 8 \frac{v^4}{4} \Big|_0^1 + 16 \frac{v^8}{8} \Big|_0^1 = 1 - 2 + 2 = 1.$$

Problem 28

We simply the integrand:

$$(4-t)\sqrt{t} = 4\sqrt{t} - t^{3/2}.$$

An antiderivative of this last function is

$$\frac{8}{3}t^{3/2} - \frac{2}{5}t^{5/2}.$$

Therefore, from the FTC, we have

$$\int_{0}^{4} (4-t)\sqrt{t} \, dt = \left(\frac{8}{3}t^{3/2} - \frac{2}{5}t^{5/2}\right)\Big|_{0}^{4}$$

$$= \left(\frac{8}{3}(4)^{3/2} - \frac{2}{5}(4)^{5/2}\right) - \left(\frac{8}{3}(0)^{3/2} - \frac{5}{2}(0)^{5/2}\right)$$

$$= \frac{64}{3} - \frac{64}{5}$$

$$= \frac{64}{15}(5-3)$$

$$= \frac{128}{15}.$$

Problem 30

We rewrite the expression of the integrand as

$$(3u-2)(u+1) = 3u^2 + u - 2.$$

An antiderivative for this integrand is

$$u^3 + \frac{u^2}{2} - 2u.$$

Therefore, from the FTC, we get

$$\int_{-1}^{2} (3u - 2)(u + 1) du = \left(u^{3} + \frac{1}{2}u^{2} - 2u\right)\Big|_{-1}^{2}$$

$$= \left(8 + 2 - 4\right) - \left(-1 + \frac{1}{2} + 2\right)$$

$$= 6 - \frac{3}{2}$$

$$= \frac{9}{2}.$$

Problem 34

We have $(s^4 + 1)/s^2 = s^2 + 1/s^2$. Thus,

$$\int_{1}^{2} \frac{s^{4} + 1}{s^{2}} ds = \int_{1}^{2} s^{2} ds + \int_{1}^{2} (1/s^{2}) ds = \frac{s^{3}}{3} \Big|_{1}^{2} + \frac{-1}{s} \Big|_{1}^{2} = \frac{8 - 1}{3} + \frac{1}{2} = \frac{11}{6}.$$

Problem 35

The expression of the integrand can be rewritten as

$$\frac{v^5 + 3v^6}{v^4} = v + 3v^2.$$

An antiderivative for this integrand is

$$\frac{v^2}{2} + v^3.$$

Therefore, form the FTC, we have

$$\int_{1}^{2} \frac{v^{5} + 3v^{6}}{v^{4}} dv = \left(\frac{1}{2}v^{2} + v^{3}\right)\Big|_{1}^{2}$$

$$= \left(2 + 8\right) - \left(\frac{1}{2} + 1\right)$$

$$= 10 - \frac{3}{2}$$

$$= \frac{17}{2}.$$

Problem 38

We divide the integral in two pars:

$$\int_{-2}^{2} f(x) \, dx = \int_{-2}^{0} f(x) \, dx + \int_{0}^{2} f(x) \, dx.$$

According to the definition of the function f(x), we have

$$\int_{-2}^{2} f(x) \, dx = \int_{-2}^{0} 2 \, dx + \int_{0}^{2} (4 - x^{2}) \, dx = 4 + 8 - 8/3.$$

So the final answer is 28/3.

Problem 54

We rewrite g(x) as followed:

$$g(x) = \int_{1-2x}^{0} t \sin t \, dt + \int_{0}^{1+2x} t \sin t \, dt = -\int_{0}^{1-2x} t \sin t \, dt + \int_{0}^{1+2x} t \sin t \, dt.$$

Write

$$G(x) = \int_0^x t \sin t \, dt$$

so that

$$q(x) = -G(1-2x) + G(1+2x).$$

Using the Chain Rule, we get

$$g'(x) = -G'(1-2x)\frac{d}{dx}(1-2x) + G'(1+2x)\frac{d}{dx}(1+2x).$$

From the FTC, we have

$$G'(x) = x \sin x$$

so that

$$g'(x) = 2(1-2x)\sin(1-2x) + 2(1+2x)\sin(1+2x).$$

We can simply this expression using some trig. identities. In g(x), we have the expression

$$2\sin(1-2x) + 2\sin(1+2x) = 4\sin(1)\cos(2x)$$

and the expression

$$-4x\sin(1-2x) + 4x\sin(1+2x) = 8x\sin(2x)\cos(1).$$

We thus obtain

$$g'(x) = 4\sin(1)\cos(2x) + 8x\cos(1)\sin(2x).$$

Problem 60

By the FTC (part 1), we have F'(x) = f(t). So, the function is concave downward when F'(x) varies from being decreasing (corresponding to the second derivative being negative). From the graph of f, we see that f is decreasing on the interval (-1,1). Thus, F is concave down on (-1,1).

Problem 75

By the FTC (part 1), we have

$$\frac{f(x)}{x^2} = \frac{1}{\sqrt{x}}.$$

Thus, isolating f(x), we obtain $f(x) = x^{3/2}$. Now, using the FTC (part 2), we have

$$6 + \int_{a}^{x} t^{-1/2} dt = 2\sqrt{x} \implies 6 + 2\sqrt{x} - 2\sqrt{a} = 2\sqrt{x}.$$

We then find $2\sqrt{a} = 6$ and so a = 9.

The desire function and number a are $f(x) = x^{3/2}$ and a = 9.