Chapter 1 Functions and Limits

1.4 The Tangent and Velocity Problems

The Tangent problem.

Example. What is the tangent to a circle?

Illustration: https://www.desmos.com/calculator/7qflpgcuay

In Geometry, a TANGENT LINE at a given point on a a circle is a line that touches the circle only at that point.

Problems with this definition:

- 1) Not all curves are circle!
- 2) For other curves, the tangent line may intersect at several points!

EXAMPLE 1 Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1, 1).

Go play around with this problem: https://www.desmos.com/calculator/kbfn4ptdop

1) Find slope secont line.

$$G_{(0,0)}: m_{PQ} = \frac{y_P - y_Q}{x_P - x_Q} = \frac{1 - 0}{1 - 0} = 1$$

$$Q(0.5,0.25)$$
: mpa = $\frac{y_P - y_Q}{x_P - x_Q} = \frac{1 - 0.25}{1 - 0.5} = 1.5$

Take an arbitrary point (a, a2) on the parabola:

$$mpq = \frac{1-\alpha^2}{1-\alpha}$$

$$m = \lim_{\alpha \to 1} \frac{1-\alpha^2}{1-\alpha} = 2$$

$$m=2$$
 $y-y_0 = m(x_0-x_0) - y-1 = 2(x_0)$ $(x_0,y_0)=(1,1)$ $y=2x-1$

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

 $\text{Galileo: } s(t) = \underline{4.9}t^2$

5'11=2.4.9. t

Conclusion

as
$$t \rightarrow 5$$

Now $\rightarrow 49$
 t
 $S(t)-S(5)$
 $t-5$

velocity at 5 seconds =
$$\lim_{t\to 5} \frac{s(t)-s(s)}{t-s} = 49 \text{ m/s}$$
.

Lo slope of secant passing through Pd a.

Instantaneous Velocity.

Relation to the tangent line.

