Chapter 1

Functions and Limits

1.5 The Limit of a Function
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Intuitive definition of a limit. Q0 -

(1] Intuitive Definition of a Limit Suppose f(x) is defined when x is near the
number a. (This means that f is defined on some open interval that contains a,
except possibly at a itself.) Then we write

lim f(x) = L
and say “the limit of f(x), as x approaches a, equals L”

if we can make the values of f(x) arbitrarily close to L (as close tod-as.-we like) by
restricting x to be sufficiently close to a (on either side of ) but not equal to a.

Three cases:
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sin x

EXAMPLE 3 Guess the value of l_in})
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One-sided Limits.

EXAMPLE 6 The Heaviside function H is defined by

{@ if <0
H(t) =

1 ift=0
What is the limit when t approached 0 from the right and when t approaches 0 from the left.
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Left-hand limits.

Right-hand limits.
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Fundamental Property: /b fg’:: Hl L\ 3

lim f(x) =L ifandonlyif lim f(x)=L and lim fx) =L

EXAMPLE 7 The graph of a function g is shown in Figure 10. Use it to state the values

(if they exist) of the following:
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Figure 10.
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Infinite limits.

EXAMPLE 8 Find lim 17 if it exists.
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Positive infinity.
VA
@ Intuitive Definition of an Infinite Limit Let f be a function defined on both y=f(x)
sides of a, except possibly at a itself. Then
lim f(x) =

means that the values of f(x) can be made arbitrarily large (as large as we please) \ >

by taking x sufficiently close to a, but not equal to a. \/0 a X
X=da

Negative Infinity

@ Definition Let f be a function defined on both sides of a, except possibly at 74

a itself. Then

) X=a
lim f(x) = —
means that the values of f(x) can be made arbitrarily large negative by taking x /\
sufficiently close to a, but not equal to a. 0 >
a X
y=fx)
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Other types of infinite limits.
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EXAMPLE 9 Find lim and lim .
x—>3+ x — 3 =3 x — 3
2o — 2°3 =0
\) 2 \
\ ) —
3 x-2 —> O
=) ‘ > = LD — —~ o0
ND3” AR 0~

3 A-> —>S OF
= i_ b -‘.LD -z 4+ =0
Azt O+

p.6



@ Definition The vertical line x = a is called a vertical asymptote of the
curve y = f(x) if at least one of the following statements is true:

lim f(x) = o lim f(x) = o lim f(x) = o

X—a X—a

lim f(x) =~ lim f() =~ lim f(x) =~

X—a—

EXAMPLE 10 Find the vertical asymptotes of f(x) = tan x.
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