Chapter 1

Functions and Limits

1.8 Continuity



Continuity

Example. What are the main difference(s) between the two following curves?
[llustration: https://www.desmos.com/calculator/hflxgbsemz

(a) Graph of f(x). (b) Graph of g(x)
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Example. Now, what are the differences between the two following functions?

J2-2 if —2<z<1 31 -2 if —2<z<1
(a)f(x)_{o if1gr<2 (b)g(x)_{o if1<z<2
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m Definition A function f is continuous at a number a if

lim f(x) = f(a)

X—>a

Three things to verify to show a function is continuous:
a) The function is defined at x = a.

Fihc\ ’hu C\bmai“.

b) The limit of the function exists at x = a.
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c) The limit of the function at x = a equals the value

of the function at x = a.

Discontinuity:

2A=-a S o~ c\\‘s cm\-:w Lj d’x, Jf( ) \“‘Q
(y or (W) or ©
is v\o'\’ sa\-‘\s ‘Q«YA .

EXAMPLE 1 Figure 2 shows the graph of a function f. At which numbers is f discon-
tinuous? Why?
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Example. Check if the functions in the first example are continuous
at x = 1 using the formulas.
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EXAMPLE 2 Where are each of the following functions discontinuous?

1
2~ — X0 1 ifz>0
, N = X (c) =
(a) f(x) P (b) flx 9 fl@) {O ifx<0
1 ifx=20
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3 kinds of discontinuity.
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(a) Removable. (b) Infinite discontinuity. C) Jump dlscontlnwty
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Continuous from left and right.

Definition A function f is continuous from the right at a number a if

lim f(x) = f(a)

x—a™’

and f is continuous from the left at a if

lim f(x) = f(a)

x—a -

EXAMPLE. Is the function

f(x):{l Jifz >0

0 ,ifz<O0

(a) continuous from theright at x =0 (b) continuous from the left at x = 0.
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Properties of Continuous Functions.

@ Theorem If f and g are continuous at ¢ and if ¢ is a constant, then the
following functions are also continuous at a:

L ftyg 2. f—g 3. cf
4. fg 5. A ifgla) # 0
9
Consequences:

Theorem The following types of functions are continuous at every number in
their domains:

e polynomials e rational functions
* root functions e trigonometric functions
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Substitution Rule Revisited.

x4+ 2x7 -1

EXAMPLE 5 Find lim
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EXAMPLE 7 Evaluate lim ——>

T

- 2 + cos x,
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Composition of Continuous Functions.

Theorem If f is continuous at » and l_1m g(x) = b, then 11m f(g(x)) = f(b)
In other words, !

X—a

lim £(g(x)) = f( lim g(x))

9 |Theorem

If g is continuous at a and f is continuous at g(a),

\ 4

then the composition f(g(x)) is continuous at a.

Example. Find the value of

lim sin(m — m2?)
x—1/2
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The Intermediate Theorem Valuwe

EXAMPLE. Suppose we have a function
flz) =2° —1.

Does the graph of the function f cross the horizontal liney = 37
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The Intermediate Value Theorem Suppose that f is continuous on the
closed interval [a, b] and let N be any number between f(a) and f(b), where
f(a) # f(b). Then there exists a number ¢ in (a, b) such that f(c) = N.
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(@) Find one number c (b) Find multiple numbers c
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EXAMPLE 9 Show that there is a root of the equation \"Do'\' .

4x —6x>+3x —2=0
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