Chapter 2

Derivatives

2.1 Derivatives and Rates of Change



The Derivative.

@ Definition The derivative of a function f at a number a, denoted by
f(a), is
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EXAMPLE 4 Find the derivative of the function f(x) = x* — 8x + 9 at the number
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Example. Find the derivative at a = 3 of the function
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Tangents.

How do we find the tangent at a point P on a curve given by the graph of a function?

Answer:
The tangent line to y = f(x) at (a, f(a)) is the line through (a, f(a)) whose slope is
equal to f'(a), the derivative of f ata.
y — fla) = f'l@)(x — a)
Velocities
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position at position at time
t=a t=a+h
- Position at t: S(t)

- Average velocity fromt =atot=a + h: s(a+h) — s(a)
h

- Instantaneous Velocity at t = a:

o(a) = }132% s(a + h})l — s(a)
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Rates of Change.

- Average rate of change when y
varies by Ay and x varies by Ax :
A
Average rate of change = 2
Ax
- Take limit as Az — 0
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