Chapter 2

Derivatives

2.9 Linear Approximations and Differentials.



An observation:
A curve y = f(x) lies very close to its tangent line near the point of
tangency.

https://www.desmos.com/calculator/lsp51krae

Figure: Linearization near the point of tangency

This suggests to approximate the values of f by the tangent line. This is a really
useful procedure because f(x) may be difficult to compute!
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Approximation by the tangent line: So the linearization is

£(x) “l“) + fa)(x — a) L(x) = f(a) + f'(@)(x — a)
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EXAMPLE 1 Find the linearization of the function f(x) = v/x + 3 ata = 1 and use

it to approximate the numbers /3.98 and /4.05 . Are these approximations over-
estimates or underestimates?
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Differentials.

If y = f(x), then

@ dx is the differential of x. It's a little increment in the variable x.

@ dy is the differential of y and dy is the approximate increment in the variable
y given by

_ dy = f'(x)dx.
jix&,{gls,\ _y |dv=F(x)

Remark:

DY =~ :w-:b e = c)ta, dx = B3

Geometric interpretation.
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EXAMPLE 3 Compare the values of Ay and dyif y = f(x) = x* + x> — 2x + 1 and
x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.
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