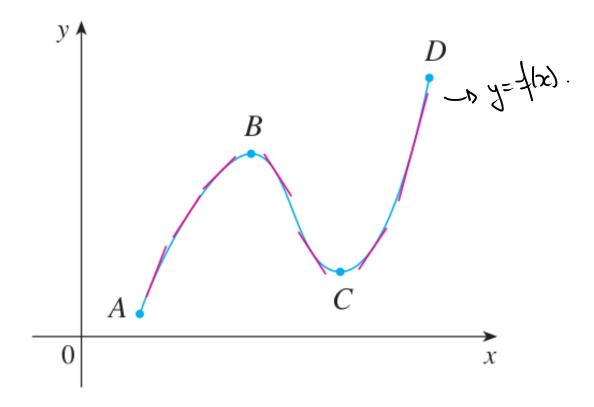
# Chapter 3 Applications of Derivatives

3.3 How Derivatives affect the Shape of a Graph

# What does f' tells us about f.



|       | $\parallel A \parallel$ | permen | B    | petween | C    | between | D    |
|-------|-------------------------|--------|------|---------|------|---------|------|
| f'(x) | DNE                     | +      | 0    | )       | 0    | +       | DNE  |
| f(x)  | Abs.                    | A      | loc. | 7       | loc. | 7       | Abs. |

# Conclusion:

## **Increasing/Decreasing Test**

- (a) If f'(x) > 0 on an interval, then f is increasing on that interval.
- (b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

**EXAMPLE 1** Find where the function  $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$  is increasing and where it is decreasing.

① Derivative 
$$f'(x) = 12x^3 - 12x^2 - 24x$$
  
=  $12x(x^2 - x - 2)$   
=  $17x(x+1)(x-2)$ 

$$2 \frac{2eros:}{\int (x) = 0} \iff x = 0, x = -1, x = 2$$

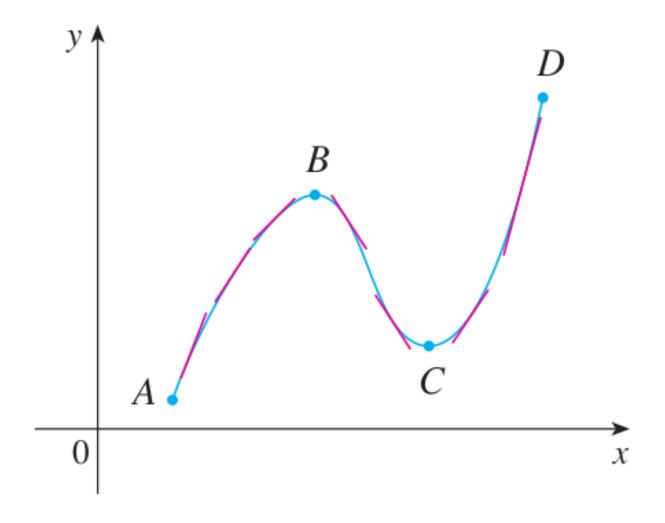
| Factors | 24 | -1   | 4 26 4     | 0   | 2762 | 2            | 4 X |
|---------|----|------|------------|-----|------|--------------|-----|
| 7C+ 1   | _  | 6    | +          | \/  | +    | $  \times  $ | +   |
| 26-2    | _  |      | _          | X   | _    | 0            | +   |
| X       | _  | /\   | _          | 0   | +    | X            | +   |
| f'(x)   | _  | 0    | +          | 0   | _    | ٥            | +   |
| f(x)    | 7  | lic. | $\nearrow$ | luc | 3    | loc          |     |

$$\chi(z) = \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{2} \sum_{k=1}^{$$





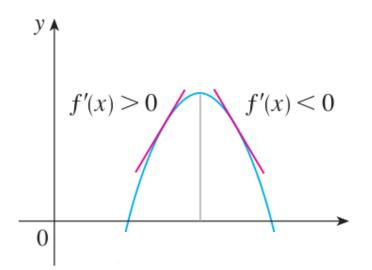
EXTREME VALUES (MAX OR MIN)

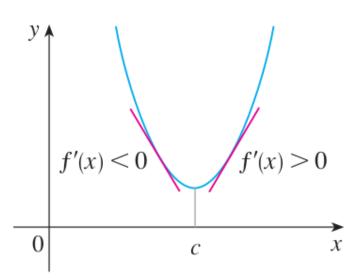


|       | $\mid A \mid$ |   | $\mid B \mid$ |   | C   |   | D           |
|-------|---------------|---|---------------|---|-----|---|-------------|
| f'(x) |               | + | 0             | _ | 0   | + |             |
| f(x)  | abs.<br>min   | 7 | max           | 7 | min | 7 | abs.<br>max |

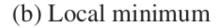
The First Derivative Test Suppose that c is a critical number of a continuous function f.

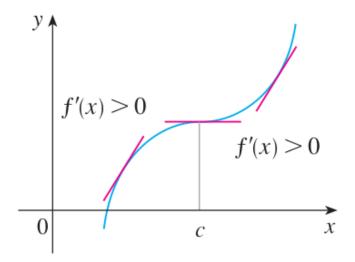
- (a) If f' changes from positive to negative at c, then f has a local maximum at c.
- (b) If f' changes from negative to positive at c, then f has a local minimum at c.
- (c) If f' is positive to the left and right of c, or negative to the left and right of c, then f has no local maximum or minimum at c.

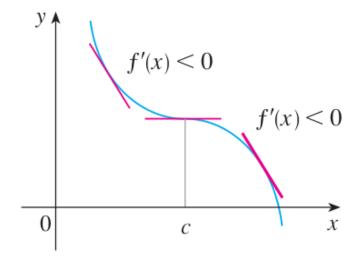




(a) Local maximum







(c) No maximum or minimum

(d) No maximum or minimum

**EXAMPLE 3** Find the <u>local maximum and minimum values</u> of the function

$$g(x) = x + 2\sin x$$
  $0 \le x \le 2\pi$ 

$$0 \le x \le 2\pi$$

$$g'(x) = 1 + 2\cos x$$

Zeros: 
$$g'(x) = 0$$
  $\Rightarrow$   $1 + 2\cos x = 0$   
 $\Rightarrow$   $\cos x = -\frac{1}{2}$ 

$$3c = \frac{4\pi}{3}$$

Table

| Factors | 0   | 2 α c | <u>2π</u> ) | < x < | 业3   | ۲ <b>%</b> ۲ | 2п  |
|---------|-----|-------|-------------|-------|------|--------------|-----|
| 1+2cosx | DNE | +     | 0           | _     | ٥    | +            | DNE |
| f(x)    | _   |       | loc<br>max. |       | luc. |              |     |

$$\chi = \pi$$

$$x = \pi$$

$$-5 + 2\cos \pi = -160 + 1+2\cos\left(\frac{3\pi}{2}\right)$$

At 
$$sc = \frac{2\pi}{3}$$
  $f(\frac{2\pi}{3}) = \frac{2\pi}{3} + 2\sin(\frac{2\pi}{3})$ 

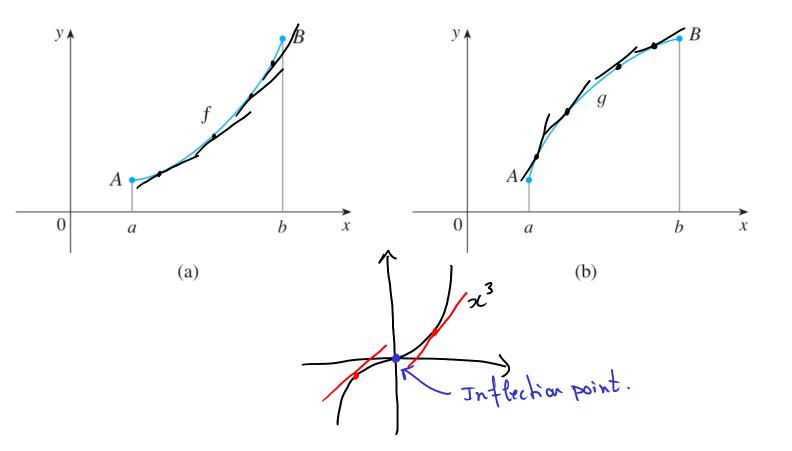
$$= \frac{2\pi}{3} + \frac{2\sqrt{3}}{2} = \frac{2\pi}{3} + \sqrt{3}$$

At 
$$\chi = \frac{4\pi}{3}$$
  $f(\frac{4\pi}{3}) = \boxed{\frac{4\pi}{3} - \sqrt{3}}$ 

## What does f" tell us about f?

#### Two important definitions:

- Definition If the graph of f lies above all of its tangents on an interval I, then it is called **concave upward** on I. If the graph of f lies below all of its tangents on I, it is called **concave downward** on I.
- Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.



### **Concavity Test**

- (a) If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- (b) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Note: There is an inflection point when the second derivative is zero.

OF DNE.

Example. Find the interval(s) of concavity of the furction

$$f(x) = x^3 - 3x^2 - 9x + 4$$

1) 2nd derivative.

$$f'(x) = 3x^{2} - 6x - 9$$

$$f''(x) = 6x - 6 = 6(x-1)$$

2 Zeros

$$f''(x) = 0 \qquad (ax = 6)$$

$$(ax = 6)$$

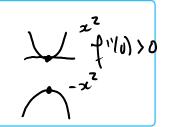
$$(bx = 1)$$

(3) Draw.

| Factors | -00 2 22 4 | ١ | < x < 00 |
|---------|------------|---|----------|
| x-1     |            | 0 | +        |
| إ" (ي)  |            |   | +        |
| floi    |            |   |          |

The Second Derivative Test Suppose f'' is continuous near c.

- (a) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- (b) If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.



- f''(x) > 0 for any  $x \Rightarrow c$  is an absolute and f'(c) = 0 minimum.
- oring f(x) = 0 minimum. or  $f''(x) \ge 0$  for any  $x \Rightarrow c$  is an absolute max. and f'(c) = 0.
- · f"(c)'=0 => can't conclude

EXAMPLE. Find the extreme values of the function  $f(x) = x^3 + 3x^2$ .

- () Critical numbers.  $f'(x) = 3x^2 + 6x = 3x(x+2)$ (.N.: f'(x) = 0 = ) x = 0 or x = -2.
- 2 2nd derivative. f''(x) = 6x + 6 = 6(x+1)
  - $\frac{\chi=0}{-0} \quad f''(0) = \frac{1}{100} (0+1) = \frac{1}{100} > 0$   $-0 \quad \chi=0 \quad \text{in a local minimum}.$ - > f(0) = 0 (loc. min. value).
  - x=-2 f''(-z) = 6(-7+1) = -6 < 0 -6 x=-2 in a local max. -s f(-2)=4 (loc. max. value).