Chapter 3 Applications of Derivatives

3.4 Limits at Infinity; Horizontal Asymptotes

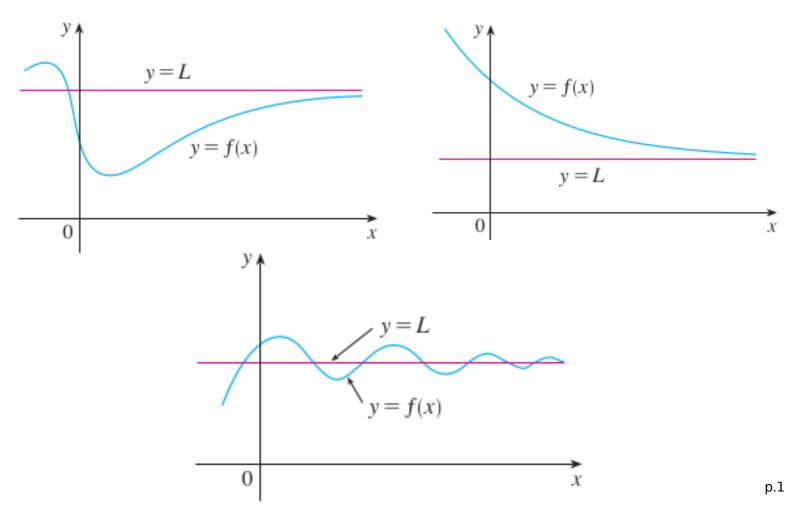
Example. What is the limit of $f(x) = \frac{x^2 - 1}{x^2 + 1}$ when x becomes large?

x	$\int f(x)$	$\begin{bmatrix} x & 1 \\ x & 1 \end{bmatrix}$	f(x)
10	≈ 0.99 ≈ 0.9998	10000	
100	2 0. 4998 	100 000	\approx 0.99999998
1000	≈ 0.999998		• •
			1
	$\lim_{x\to\infty}\frac{x^2-1}{x^2+1}=$	= 1	

1 Intuitive Definition of a Limit at Infinity Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large.



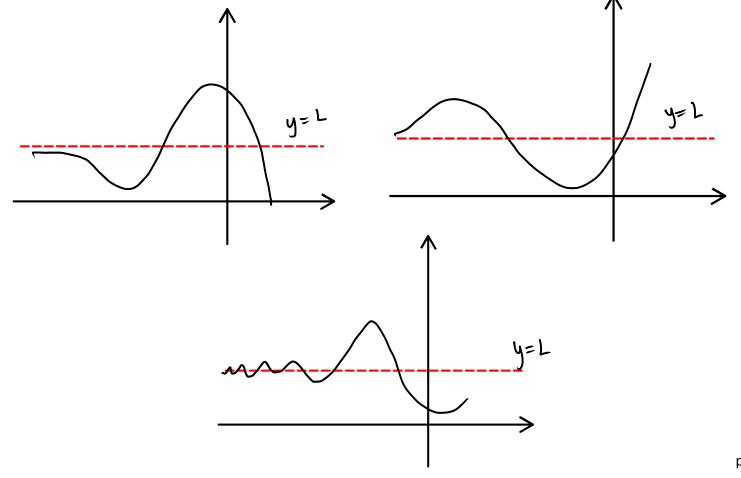
Example. What is the limit of $f(x) = \frac{x^2 - 1}{x^2 + 1}$ when x becomes large?

x	f(x)	x	f(x)		
-10	≈ 0.99	- 100 000	0.999999998		
		\ \ '			
-10000	≈ 0.9999998	\downarrow	1		
$\lim_{x \to -\infty} \frac{x^2 + 1}{x^2 - 1} = 1$					

Definition Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

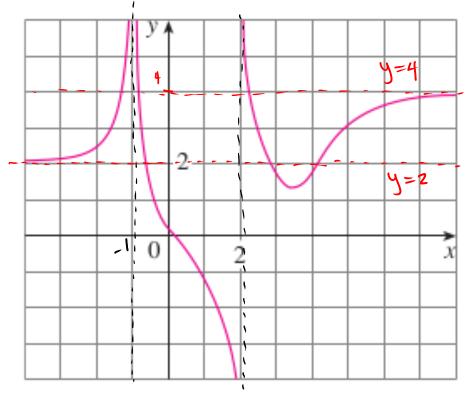
means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large negative.



Definition The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L$$
 or $\lim_{x \to -\infty} f(x) = L$

EXAMPLE 1 Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown in Figure 5.



$$\lim_{x\to 2^{-}}f(x)=-\infty$$

and
$$\lim_{2L\to 2^+} f(2i) = +\infty$$

$$x=2$$
 is a VA.

FIGURE 5

B)
$$\frac{\text{limists at infinity}}{\text{lim}}$$
 $\frac{f(x)}{2} = 2$. $\frac{f(x)}{2} = 4$
 $\frac{1}{2} = 4$

Rules for Limits at infinity.

4 Theorem If
$$r > 0$$
 is a rational number, then

$$\lim_{x \to \infty} \frac{1}{x^r} = 0$$

ro e.g. r=1/3

If r > 0 is a rational number such that x^r is defined for all x, then x = x = x.

$$\lim_{x \to -\infty} \frac{1}{x^r} = 0$$

EXAMPLE 3 Evaluate

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

 $\lim_{x\to\infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$ Thighest power are the same, the limit of the quotient of the leading coef.

Factor higher power of x:

$$\frac{3x^{2}-x-2}{5x^{2}+4x+1} = \frac{x^{2}(3-x^{-1}-2x^{-2})}{x^{2}(5+4x^{-1}+x^{-2})} = \frac{3-\frac{1}{x}-\frac{2}{x^{2}}}{5+\frac{4}{x}+\frac{1}{x^{2}}}$$

$$\left(\int_{\chi \to \infty} \lim_{\infty} \left(3 - \frac{1}{\chi} - \frac{z}{\chi^2} \right) = \lim_{\chi \to \infty} 3 - \lim_{\chi \to \infty} \frac{1}{\chi} - 2 \lim_{\chi \to \infty} \frac{1}{\chi^2}$$

$$= 3 - 0 - 2.0 = 3$$

$$= 5 + 4.0 + 0 = 5$$

$$\lim_{2l\to\infty} \frac{3 - \frac{1}{2} - \frac{2}{2}}{5 + \frac{11}{2} + \frac{1}{2}} = \lim_{2l\to\infty} \frac{3 - \frac{1}{2} - \frac{2}{2}}{\lim_{2l\to\infty} 5 + \frac{11}{2} + \frac{1}{2}} = \frac{3}{5}$$

When highest powers are different: $\frac{x^3 + x}{x^2 + 2x} = \frac{x^3 \left(1 + \frac{1}{x^2}\right)}{2x^2 \left(1 + \frac{1}{x}\right)} \qquad \lim_{x \to \infty} \left(\frac{1}{x^2}\right) = \frac{1}{x^2 + 2x}$ $= x \left(\frac{1 + \frac{1}{x^2}}{1 + \frac{1}{x}}\right)$ $\lim_{x \to \infty} \frac{x^3 + x}{x^2 + x} = \lim_{x \to \infty} \left(\lim_{x \to \infty} \frac{1 + \frac{1}{x^2}}{1 + \frac{1}{x}}\right)$ $\lim_{x \to \infty} \frac{x^3 + x}{x^2 + x} = \lim_{x \to \infty} \left(\lim_{x \to \infty} \frac{1 + \frac{1}{x^2}}{1 + \frac{1}{x}}\right)$

EXAMPLE 4 Find the horizontal and vertical asymptotes of the graph of the function

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

$$f(x) = \frac{\sqrt{x^2}(2 + \frac{1}{x^2})}{x(3 - \frac{5}{x})} = \frac{\sqrt{x^2}}{x(3 - \frac{5}{x})}$$

$$\begin{bmatrix} \text{Note: } \sqrt{x^2} = \sqrt{1} \Rightarrow \sqrt{x^2} = 2 \Rightarrow |x| = 2 \end{bmatrix}$$

$$56, \quad \sqrt{x^2} = |x|$$

$$\frac{\text{HA: } \lim_{\chi \to \infty} f(\chi) = \lim_{\chi \to \infty} |x| \sqrt{2 + \frac{1}{x^2}}}{x(3 - \frac{5}{x})} = \lim_{\chi \to \infty} \frac{|x| \sqrt{2 + \frac{1}{x^2}}}{x(3 - \frac{5}{x})}$$

$$= \lim_{\chi \to \infty} \frac{\sqrt{2}}{x(3 - \frac{5}{x})} = \lim_{\chi \to \infty} \frac{\sqrt{2}}{x(3 - \frac{5}{x})}$$

$$\lim_{\chi \to \infty} \frac{|x| \sqrt{2 + \frac{1}{x^2}}}{x(3 - \frac{5}{x})} = \lim_{\chi \to \infty} \frac{\sqrt{2}}{x(3 - \frac{5}{x})}$$

$$\int_{\chi \to \infty} \frac{|x| \sqrt{2 + \frac{1}{x^2}}}{x(3 - \frac{5}{x})} = \lim_{\chi \to \infty} \frac{\sqrt{2}}{x(3 - \frac{5}{x})}$$

$$\int_{\chi \to \infty} \frac{|x| \sqrt{2 + \frac{1}{x^2}}}{x(3 - \frac{5}{x})} = \lim_{\chi \to \infty} \frac{\sqrt{2}}{x(3 - \frac{5}{x})}$$

$$\int_{\chi \to \infty} \frac{|x| \sqrt{2}}{x(3 - \frac{5}{x})} = \lim_{\chi \to \infty} \frac{\sqrt{2}}{x(3 - \frac{5}{x})}$$

EXAMPLE 5 Compute
$$\lim_{x\to\infty} (\sqrt{x^2+1}-x)$$
. \longrightarrow ∞ \longrightarrow ∞

Simplify:

$$(\sqrt{x^{2}+1}-x) \cdot (\sqrt{x^{2}+1}+x) = \frac{1}{\sqrt{x^{2}+1}}+x$$

$$\lim_{\chi\to\infty} \sqrt{x^{2}+1}+\chi = \lim_{\chi\to\infty} \sqrt{x^{2}}\sqrt{1+\frac{1}{2}}+\chi$$

$$=\lim_{\chi\to\infty} \frac{1}{\chi(\sqrt{1+\frac{1}{2}}+\chi)}$$

Infinite Limits at Infinity.

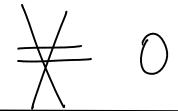
The notation

$$\lim_{x\to\infty} f(x) = \infty$$

means that the values of f(x) become larger and larger as the values of x becomes larger and larger. Similar meanings are attached to the following symbols:

$$\lim_{x \to -\infty} f(x) = \infty$$
, $\lim_{x \to \infty} f(x) = -\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$.

WARNING!!



EXAMPLE 8 Find $\lim_{x \to \infty} x^3$ and $\lim_{x \to \infty} x^3$.

x gets bigger and bigger, x3 gets bigger and bigger

Lo lim
$$x^3 = -0$$

(2)
$$x = -10$$

$$L_{D} x^{3} = (-10)^{3} = (-1)^{3} (10)^{3}$$

$$= -10^{3}$$

$$= -10^{9}$$

EXAMPLE 9 Find
$$\lim_{x\to\infty} (x^2 - x)$$
.

Find $\lim_{x\to\infty} (x^2 - x)$. $\infty - \infty$ Undefined.

$$\lim_{\chi \to \infty} \chi^2 - \chi = \lim_{\chi \to \infty} \chi(\chi - 1)$$

$$= \lim_{\chi \to \infty} \chi \lim_{\chi \to \infty} \chi - 1 = \infty$$

$$= \lim_{\chi \to \infty} \chi \lim_{\chi \to \infty} \chi - 1 = \infty$$

Rules with infinities:

 $\lim_{x\to\infty}f(x)=\infty\quad\text{and}\quad\lim_{x\to\infty}g(x)=-\infty$

and lim h(sc) = 00

$$\lim_{n\to\infty} f(x)h(x) = \infty \quad (=\infty,\infty)$$

.
$$\lim_{n\to\infty} (f(n)+c) = \infty (= \infty+c) | c real rumber.$$

$$\lim_{x\to\infty} (f(x)-c) = \infty \quad (=\infty-c), \quad c \text{ real}$$
Number

$$\lim_{x\to\infty}g(x)f(x)=-\infty (=(-\infty)\cdot\infty)$$

$$\lim_{x\to\infty} (g(x)+c) = -\infty (=-\infty+c), \quad c \text{ real}$$

.
$$\lim_{x\to\infty} (g(si)-c) = -\infty (=-\infty-c)$$
, creal number.