Math 241

CHAPTER 3

Section 3.9: Antiderivatives

Contents

Definition	2
General Antiderivatives	3
Table of Antiderivatives	4
Initial Condition	5

Created by: Pierre-Olivier Parisé Spring 2023

DEFINITION

A function F is an **antiderivative** of a function f if F'(x) = f(x).

EXAMPLE 1. Find an antiderivative of the following functions.
(a)
$$f(x) = x^2$$
 (b) $g(x) = 3x^3 + \cos(x)$ (c) $h(x) = x^{2/3} + 4\sec^2(x)$.
(a) $F(x) = \frac{1}{3}x^3 + 2$ $\xrightarrow{1} F'(x) = \frac{1}{3}(3x^3) = x^2$
 $F(x) = \frac{1}{3}x^3 + 2$ $\xrightarrow{-} F'(x) = \frac{1}{3}(3x^2) + 0 = x^2$
(b) $G_1(x) = \frac{3}{4}x^4 + \sin(x) + 2 \xrightarrow{-} G_1'(x) = \frac{3}{4}(A(x^3)) + (\cos x)$
 $= 3x^3 + (\cos x)$
(c) $H(x) = \frac{3}{5}x^{\frac{5}{3}} + 4 + 4xy(x)$
 $H'(x) = \frac{3}{5}(\frac{5}{3}x^{\frac{5}{3}}) + 4 + \sec^2 x + 0$
 $= x^{2/3} + 4 \sec^2 x$

<u>Remarks:</u>

- Recall that f'(x) = g'(x) if and only if f(x) = g(x) + C for some constant C.
- There are more than just one antiderivative!

The most general antiderivative of a function f is

F(x) + C,

where C is a constant.

(a) Several Antiderivatives of $f(x) = x^2$, that is $\frac{x^3}{3} + C$

(b) Several antiderivatives of $f(x) = x^{2/3} + \cos(x)$, that is $\frac{3}{5}x^{5/3} + \sin(x) + C$.

EXAMPLE 2 Find the most general antiderivative of each of the following functions.
(a)
$$f(x) = \sin x$$
.
(b) $f(x) = x^n, n \ge 0$.
(c) $F(x) = -\cos x$ $-b$ $F'(x) = -(-\sin x) = \sin x$.
Gren. And $F'(x) = -\cos x + C$
(b) $F(x) = -\cos x + C$
(c) $F(x) = -\cos x + C$

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	$\cos x$	$\sin x$
f(x) + g(x)	F(x) + G(x)	$\sin x$	$-\cos x$
$x^n \ (n \neq -1)$	(-1) x^{n+1}	$\sec^2 x$	tan <i>x</i>
	n + 1	$\sec x \tan x$	sec x

Figure 2: Properties and some Antiderivatives

EXAMPLE 3. Find all functions g such that

EXAMPLE 4. Find F if $F'(x) = x\sqrt{x}$ and F(1) = 2. $x\sqrt{x} = x \cdot x^{1/2} = x^{3/2}$ $-5 \quad F(x) = \frac{3/2+1}{2c} + C = \frac{5/2}{5/2} + C$ $-17 F(x) = \frac{2}{5}x^{5/2} + C$ he have F(1) = Z $\Rightarrow 2 = F(1) = \frac{2}{5} + C \Rightarrow C = \frac{8}{5}$ $\Rightarrow F(x) = \frac{2}{5} x^{5/2} + \frac{8}{5}$ EXAMPLE 5. Find F if $F'(x) = \frac{1}{x^2}$ and F(1) = 2. $\frac{1}{\chi^2} = \chi^{-2} - 5 F(\chi) = \frac{\chi^{-2+1}}{2+1} + C$ $-b F(x) = -\frac{1}{x} + C$ We have F(1)=2 \Rightarrow $Z = -\frac{1}{2} + C \Rightarrow C = 3$

$$S_{0}, [F(x)] = -\frac{1}{x} + 3$$