Math 241

Chapter 4

Section 4.1: Areas and Distances

Contents

Divide and Conquer	With the l	Right E	Endpoir	nt Rule	e! .							
Divide and Conquer	With the l	Left En	dpoint	Rule!								•
Sigma Notation												•
Taking the Limit! .												

What is the area of the following shapes?

<u>Trick</u>: Use simpler shapes, such as rectangles, to approximate the area.

EXAMPLE 1. Using rectangles, approximate the area of the region S under the graph of $y = x^2$ between x = 0 and x = 1. Go to Desmos: https://www.desmos.com/calculator/gfrgqd4nvx

Divide and Conquer With the Right Endpoint Rule!

Suppose we want to compute the area of a region S bounded by the graph of some function y = f(x).

<u>STEP I</u> Subdivide the region S into n strips of equal width $\Delta x = (b - a)/n$.

- <u>STEP II</u> Choose the right-end point for all subintervals: $x_1 = a + \Delta x, x_2 = a + 2\Delta x, \dots, x_{n-1} = a + (n-1)\Delta x, x_n = b.$
- $\underline{\text{STEP III}}$ Approximate by adding the area of each rectangle:

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x.$$

Divide and Conquer With the Left Endpoint Rule!

Suppose we want to compute the area of a region S bounded by the graph of some function y = f(x) from x = a to x = b.

<u>STEP I</u> Subdivide the region S into n strips of equal width $\Delta x = (b - a)/n$.

<u>STEP III</u> Approximate by adding the area of each rectangle:

$$L_n = f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x.$$

Sigma Notation

We use the symbol \sum to write a summation of numbers compactly:

ending index
$$\rightarrow n$$
 general ferm
index variable $= k \iff \text{starting index}$

EXAMPLE 2.

a) Expand $\sum_{i=1}^{7} i$.

b) Write $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$ with the Sigma notation.

c) Write 1 + 3 + 5 + 7 + 9 + 11 + 13 with the Sigma notation.

A) general term:
$$q_i = i$$
 $[a(i) = i]$
start. index: 1
end. index: 7
 $\frac{7}{i=1}$ $i = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28$
b) $\frac{7}{i=1}$ $\frac{1}{i}$ general term: $\frac{1}{i}$ start index: 1
end. index: 7
c) general term: $2i-1$ \rightarrow $\frac{7}{i=1}$ ($2i-1$)
Useful Sum Formulas:
 $\cdot \sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2};$

•
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6};$$

• $\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2.$

$$\int_{0}^{1} x^{2} c \, dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$$

Taking the Limit!

EXAMPLE 3. Show that the area of the region S in Example 1 is 1/3. In other words, show $x^2 = f(x)$ that $\int_{-\infty}^{\infty} z^2 dz = \operatorname{Area}(S) = \lim_{n \to \infty} R_n = 1/3.$ Expression of Kn a=0 b=1 $f(x) = \chi^2$ $\frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$ Dx= $\chi_1 = 0 + |\Delta x = \frac{1}{1}, \quad \chi_2 = 0 + 2 \cdot \Delta x = \frac{2}{2}$ $\chi_i = O + i \cdot \Delta x = \frac{i}{n} , \dots , \chi_n = O + n \cdot \Delta x = 1$ $R_n = f(x_i) \cdot \Delta x + f(x_i) \cdot \Delta x + \dots + \Delta x f(x_i)$ So, + Ase f(xn) $= \sum_{i=1}^{n} \left(f(x_i) \cdot \frac{1}{n} \right)$ =) $R_{n} = \sum_{i=1}^{n} \frac{1}{n^{2}} \cdot \frac{1}{n} = \sum_{i=1}^{n} \frac{1}{n^{3}}$ <u>Take limit</u>. () $R_n = \frac{1}{n^3} \sum_{i=1}^{n} \frac{i^2}{i^2} = \frac{1}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right)$ 2) $\lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{2n^3 + 3n^2 + n}{1 + 3} = \frac{2}{10} =$

<u>General definition of Area</u>: The area of the region S lying under the graph of a function y = f(x) from x = a to x = b is given by

- Area(S) = $\lim_{n \to \infty} R_n = \lim_{n \to \infty} \left(f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x \right)$
- Area(S) = $\lim_{n \to \infty} L_n = \lim_{n \to \infty} \left(f(x_0) \Delta x + f(x_1) \Delta x + \dots + f(x_{n-1}) \Delta x \right)$

If an object move at constant velocity, then the distance between the start and finish line is easy to compute:

Distance = Velocity
$$\times \Delta T$$
ime .

What do we do if the velocity is not constant?

EXAMPLE 4. Suppose the odometer on our car is broken and we want to estimate the distance driven over a 30-second time interval. We take speedometer readings every five seconds and record them in the following table:

Time (s)	0	5	10	15	20	25	30
Velocity (ft/s)	25	31	35	43	47	45	41

Distance
$$\approx \sum_{i=0}^{5} f(x_i) A_{x_i}$$

from the table

$$= 25 \cdot 5 + 31 \cdot 5 + 35 \cdot 5 + 43 \cdot 5 + 47 \cdot 5 + 45 \cdot 5 = 1130 \text{ ft}$$

<u>Remark:</u>

• The total distance is given by the area under the curve of the velocity function!