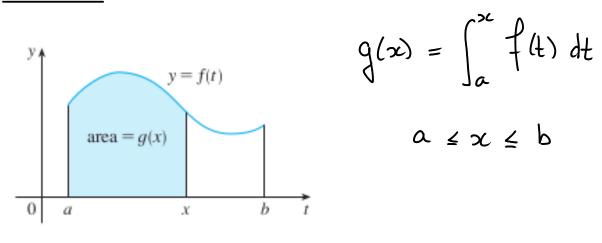
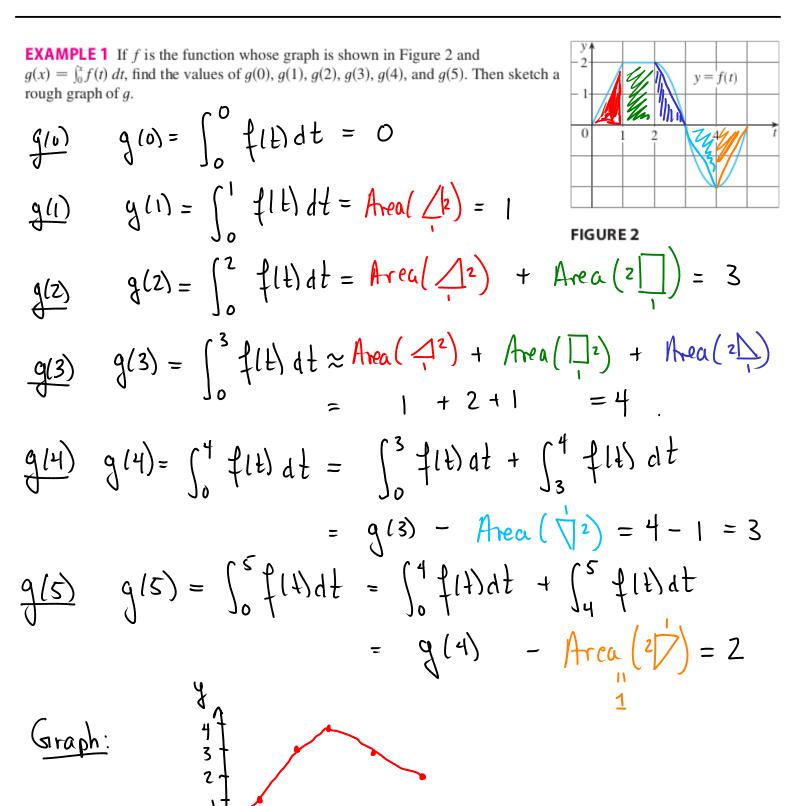
Chapter 4 Integrals

4.3 The Fundamental Theorem of Calculus

Area Function.

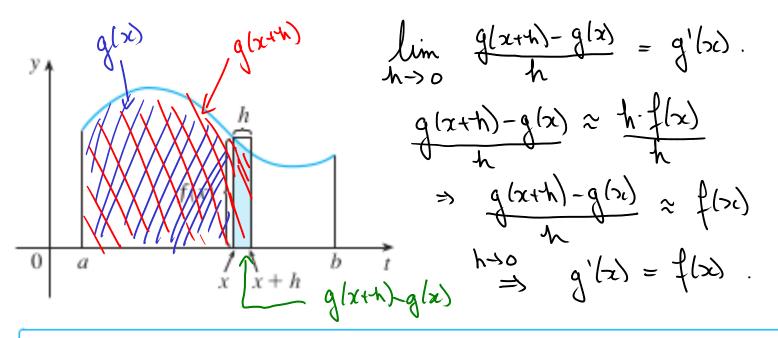




4

3

Ś



The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt \qquad a \le x \le b$$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

EXAMPLE 2 Find the derivative of the function $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

$$g'(x) = \sqrt{1 + x^{2}}$$
(1) Jdenhify integrand : $f(t) = \sqrt{1 + t^{2}}$
(2) Apply FTC part I.: $g'(x) = f(x)$
 $= \sqrt{1 + x^{2}}$

Example. Find
$$\frac{d}{dx} \left(\int_{1}^{x^{4}} \sec(t) dt \right)$$
.

$$\begin{aligned} g'(x) \neq \sec(x) \\ g'(x) = \int_{1}^{x} \operatorname{acc}(t) dt \longrightarrow G'(x) = \frac{\sec(x)}{5} \\ G'(x) = \int_{1}^{x} \operatorname{acc}(t) dt \longrightarrow G'(x) = \frac{\sec(x)}{5} \\ G'(x) = \int_{1}^{x^{4}} \operatorname{acc}(t) dt = g(x) \\ \operatorname{compos}_{i} \operatorname{han}_{i} \\ df G d x^{4} \\ \Rightarrow \frac{d}{dx} \left(q(x) \right) = \frac{d}{dx} \left[G_{1}(x^{4}) \right] \\ = G'_{1}(x^{4}) \cdot \frac{d}{dx} (x^{4}) \\ = \operatorname{Aec}(x^{4}) \cdot 4x^{3} \end{aligned}$$

Example. Find the derivative of the function $f(x) = \int_{\sin x}^{1} \sqrt{1 + t^2} dt$ $\int_{0}^{a} f(x) dx = -\int_{a}^{b} f(x)$ Apply with a=1 d $b= \sin x$ $\Rightarrow \int_{\sin x}^{1} \sqrt{1 + t^2} dt = -\int_{1}^{\sin x} \sqrt{1 + t^2} dt$

So,

$$f'(x) = -\sqrt{|+(\sin x)|^2} \cdot \frac{d}{dx}(\sin x)$$

$$= -\cos(x)\sqrt{|+\sin x|^2}$$

Second part of the Fundamental Theorem of Calculus.

Example. Compute the integral $\int_{a}^{b} x \, dx$ where a and b are two numbers such that a < b.

$$\frac{\text{Formula}}{\int_{a}^{b} x^{n} dx} = \frac{b^{n+1} - a^{n+1}}{n+1}$$

$$x^{n} \xrightarrow{t} \frac{x^{n+1}}{n+1} \Rightarrow \int_{a}^{b} x^{n} dx = F(b) - F(a)$$

$$Anhi-derivative \int_{a}^{b} F(x)$$

The Fundamental Theorem of Calculus, Part 2 If *f* is continuous on [*a*, *b*], then $\int_{a}^{b} f(x) dx = F(b) - F(a)$

where F is any antiderivative of f, that is, a function F such that F' = f.

Example. Evaluate the integral
$$\int_{-2}^{1} x^{3} dx$$
.
 $x^{3} \xrightarrow{\text{Anli-derivative}} x^{4} + x^{4} = F(x)$
 $F(x) \Big|_{-2}^{1}$
 $\Rightarrow \int_{-2}^{1} x^{3} dx = F(1) - F(-2)$
 $= \left(\frac{1}{4} + x^{4}\right) - \left(\frac{16}{4} + x^{4}\right) = -\frac{15}{4}$

Example. Find the value of the integral $\int_0^1 (3x^2 - \sin(\pi x) + \cos(x)) dx$. $\Box = \int_0^1 (3x^2 - \sin(\pi x) + \cos(x)) dx$.

$$\int_{0}^{1} 3x^{2} + \cos x \, dx = \int_{0}^{1} 3x^{2} \, dx + \int_{0}^{1} \cos x \, dx$$
$$= 3 \int_{0}^{1} x^{2} \, dx + \int_{0}^{1} \cos x \, dx$$
$$= 3 \frac{x^{3}}{3} \Big|_{0}^{1} + \sin x \Big|_{0}^{1}$$
$$= 3 \left(\frac{1^{3}}{3} - \frac{0^{3}}{3} \right) + (\sinh \theta - \sinh \theta)$$
$$= \left[\frac{1}{1} + \sin(\theta) \right]$$

EXAMPLE 8 What is wrong with the following calculation?

$$\int_{-1}^{3} \frac{1}{x^{2}} dx = \frac{x^{-1}}{-1} \Big]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$
The interval $[L-1,3]$ "contains" a vertical asymptote ∇ .
The calculations are not legit ∇ .

Differentiation and Integration as Inverse Processes.

The Fundamental Theorem of Calculus Suppose *f* is continuous on [*a*, *b*]. **1.** If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).

2. $\int_{a}^{b} f(x) dx = F(b) - F(a)$, where F is any antiderivative of f, that is, F' = f.