CHAPTER 4 CONCEPT CHECK ANSWERS

1. (a) Write an expression for a Riemann sum of a function f on an interval [a, b]. Explain the meaning of the notation that you use.

If f is defined for $a \le x \le b$ and we divide the interval [a, b] into n subintervals of equal width Δx , then a Riemann sum of f is

$$\sum_{i=1}^{n} f(x_i^*) \, \Delta x$$

where x_i^* is a point in the *i*th subinterval.

(b) If $f(x) \ge 0$, what is the geometric interpretation of a Riemann sum? Illustrate with a diagram.

If f is positive, then a Riemann sum can be interpreted as the sum of areas of approximating rectangles, as shown in the figure.

(c) If f(x) takes on both positive and negative values, what is the geometric interpretation of a Riemann sum? Illustrate with a diagram.

If f takes on both positive and negative values then the Riemann sum is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the areas of the rectangles that lie below the x-axis (the areas of the blue rectangles minus the areas of the gray rectangles).

2. (a) Write the definition of the definite integral of a continuous function from a to b.

If f is a continuous function on the interval [a, b], then we divide [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ be the endpoints of these subintervals. Then

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \, \Delta x$$

where x_i^* is any sample point in the *i*th subinterval $[x_{i-1}, x_i]$.

(b) What is the geometric interpretation of $\int_a^b f(x) dx$ if $f(x) \ge 0$?

If f is positive, then $\int_a^b f(x) dx$ can be interpreted as the area under the graph of y = f(x) and above the x-axis for $a \le x \le b$.

(c) What is the geometric interpretation of $\int_a^b f(x) dx$ if f(x) takes on both positive and negative values? Illustrate with a diagram.

In this case $\int_a^b f(x) dx$ can be interpreted as a "net area," that is, the area of the region above the *x*-axis and below the graph of f (labeled "+" in the figure) minus the area of the region below the *x*-axis and above the graph of f (labeled "-").

3. State the Midpoint Rule.

If f is a continuous function on the interval [a, b] and we divide [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$, then

$$\int_a^b f(x) \, dx \approx \sum_{i=1}^n f(\overline{x}_i) \, \Delta x$$

where $\bar{x}_i = \text{midpoint of } [x_{i-1}, x_i] = \frac{1}{2}(x_{i-1} + x_i).$

4. State both parts of the Fundamental Theorem of Calculus.

Suppose f is continuous on [a, b].

Part 1. If
$$g(x) = \int_a^x f(t) dt$$
, then $g'(x) = f(x)$.

Part 2. $\int_a^b f(x) dx = F(b) - F(a)$, where F is any antiderivative of f, that is, F' = f.

5. (a) State the Net Change Theorem.

The integral of a rate of change is the net change:

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

(b) If r(t) is the rate at which water flows into a reservoir, what does $\int_{t_1}^{t_2} r(t) dt$ represent?

 $\int_{t_1}^{t_2} r(t) dt$ represents the change in the amount of water in the reservoir between time t_1 and time t_2 .

CHAPTER 4 CONCEPT CHECK ANSWERS (continued)

- **6.** Suppose a particle moves back and forth along a straight line with velocity v(t), measured in feet per second, and acceleration a(t).
 - (a) What is the meaning of $\int_{60}^{120} v(t) dt$?

 $\int_{60}^{120} v(t) dt$ represents the net change in position (the displacement) of the particle from t = 60 s to t = 120 s, in other words, in the second minute.

(b) What is the meaning of $\int_{60}^{120} |v(t)| dt$?

 $\int_{60}^{120} |v(t)| dt$ represents the total distance traveled by the particle in the second minute.

(c) What is the meaning of $\int_{60}^{120} a(t) dt$?

 $\int_{60}^{120} a(t) dt$ represents the change in velocity of the particle in the second minute.

7. (a) Explain the meaning of the indefinite integral $\int f(x) dx$.

The indefinite integral $\int f(x) dx$ is another name for an antiderivative of f, so $\int f(x) dx = F(x)$ means that F'(x) = f(x).

(b) What is the connection between the definite integral $\int_a^b f(x) dx$ and the indefinite integral $\int f(x) dx$?

The connection is given by Part 2 of the Fundamental Theorem:

$$\int_{a}^{b} f(x) \, dx = \int f(x) \, dx \Big]_{a}^{b}$$

if f is continuous on [a, b].

8. Explain exactly what is meant by the statement that "differentiation and integration are inverse processes."

Part 1 of the Fundamental Theorem of Calculus can be rewritten as

$$\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x)$$

which says that if f is integrated and then the result is differentiated, we arrive back at the original function f.

Since F'(x) = f(x), Part 2 of the theorem (or, equivalently, the Net Change Theorem) states that

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$

This says that if we take a function F, first differentiate it, and then integrate the result, we arrive back at the original function, but in the form F(b) - F(a).

Also, the indefinite integral $\int f(x) dx$ represents an antiderivative of f, so

$$\frac{d}{dx} \int f(x) \, dx = f(x)$$

9. State the Substitution Rule. In practice, how do you use it?

If u = g(x) is a differentiable function and f is continuous on the range of g, then

$$\int f(g(x)) g'(x) dx = \int f(u) du$$

In practice, we make the substitutions u = g(x) and du = g'(x) dx in the integrand in order to make the integral simpler to evaluate.