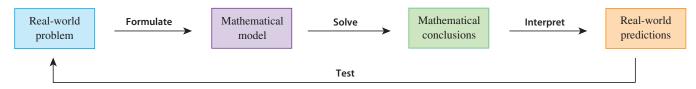


73–78 Determine whether f is even, odd, or neither. If you have a graphing calculator, use it to check your answer visually.

73.
$$f(x) = \frac{x}{x^2 + 1}$$
 74. $f(x) = \frac{x^2}{x^4 + 1}$


75.
$$f(x) = \frac{x}{x+1}$$

76. $f(x) = x |x|$
77. $f(x) = 1 + 3x^2 - x^4$
78. $f(x) = 1 + 3x^3 - x^5$

- **79.** If f and g are both even functions, is f + g even? If f and g are both odd functions, is f + g odd? What if f is even and g is odd? Justify your answers.
- **80.** If *f* and *g* are both even functions, is the product *fg* even? If *f* and *g* are both odd functions, is *fg* odd? What if *f* is even and *g* is odd? Justify your answers.

1.2 Mathematical Models: A Catalog of Essential Functions

A **mathematical model** is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world problem, our first task is to formulate a mathematical model by identifying and naming the independent and dependent variables and making assumptions that simplify the phenomenon enough to make it mathematically tractable. We use our knowledge of the physical situation and our mathematical skills to obtain equations that relate the variables. In situations where there is no physical law to guide us, we may need to collect data (either from a library or the Internet or by conducting our own experiments) and examine the data in the form of a table in order to discern patterns. From this numerical representation of a function we may wish to obtain a graphical representation by plotting the data. The graph might even suggest a suitable algebraic formula in some cases.

The modeling process

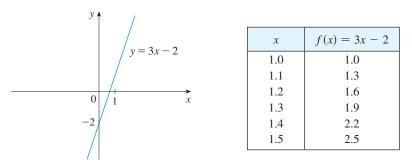
The second stage is to apply the mathematics that we know (such as the calculus that will be developed throughout this book) to the mathematical model that we have formulated in order to derive mathematical conclusions. Then, in the third stage, we take those mathematical conclusions and interpret them as information about the original real-world phenomenon by way of offering explanations or making predictions. The final step is to test our predictions by checking against new real data. If the predictions don't compare well with reality, we need to refine our model or to formulate a new model and start the cycle again.

A mathematical model is never a completely accurate representation of a physical situation—it is an *idealization*. A good model simplifies reality enough to permit math-

ematical calculations but is accurate enough to provide valuable conclusions. It is important to realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships observed in the real world. In what follows, we discuss the behavior and graphs of these functions and give examples of situations appropriately modeled by such functions.

Linear Models


The coordinate geometry of lines is reviewed in Appendix B.

When we say that *y* is a **linear function** of *x*, we mean that the graph of the function is a line, so we can use the slope-intercept form of the equation of a line to write a formula for the function as

$$y = f(x) = mx + b$$

where *m* is the slope of the line and *b* is the *y*-intercept.

A characteristic feature of linear functions is that they grow at a constant rate. For instance, Figure 2 shows a graph of the linear function f(x) = 3x - 2 and a table of sample values. Notice that whenever x increases by 0.1, the value of f(x) increases by 0.3. So f(x) increases three times as fast as x. Thus the slope of the graph of y = 3x - 2, namely 3, can be interpreted as the rate of change of y with respect to x.

FIGURE 2

EXAMPLE 1

(a) As dry air moves upward, it expands and cools. If the ground temperature is 20° C and the temperature at a height of 1 km is 10° C, express the temperature *T* (in °C) as a function of the height *h* (in kilometers), assuming that a linear model is appropriate.

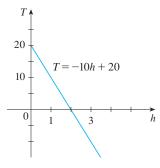
- (b) Draw the graph of the function in part (a). What does the slope represent?
- (c) What is the temperature at a height of 2.5 km?

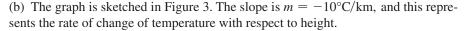
SOLUTION

(a) Because we are assuming that T is a linear function of h, we can write

$$T = mh + b$$

We are given that T = 20 when h = 0, so


$$20 = m \cdot 0 + b = b$$


In other words, the *y*-intercept is b = 20. We are also given that T = 10 when h = 1, so

$$10 = m \cdot 1 + 20$$

The slope of the line is therefore m = 10 - 20 = -10 and the required linear function is

$$T = -10h + 20$$

(c) At a height of h = 2.5 km, the temperature is

$$T = -10(2.5) + 20 = -5^{\circ}C$$

If there is no physical law or principle to help us formulate a model, we construct an **empirical model**, which is based entirely on collected data. We seek a curve that "fits" the data in the sense that it captures the basic trend of the data points.

EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, measured in parts per million at Mauna Loa Observatory from 1980 to 2012. Use the data in Table 1 to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where *t* represents time (in years) and *C* represents the CO_2 level (in parts per million, ppm).

Table 1				
Year	CO ₂ level (in ppm)	Year	CO ₂ level (in ppm)	
1980	338.7	1998	366.5	
1982	341.2	2000	369.4	
1984	344.4	2002	373.2	
1986	347.2	2004	377.5	
1988	351.5	2006	381.9	
1990	354.2	2008	385.6	
1992	356.3	2010	389.9	
1994	358.6	2012	393.8	
1996	362.4			

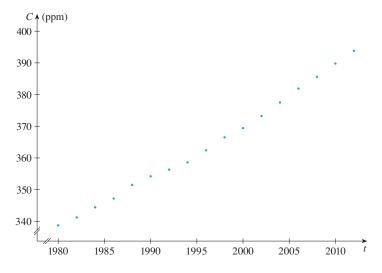


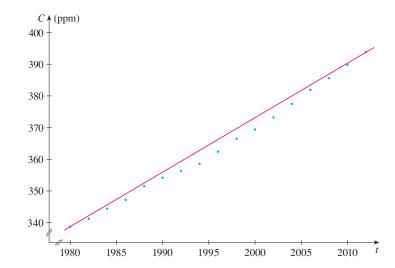
FIGURE 4 Scatter plot for the average CO₂ level

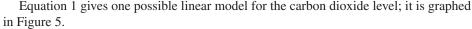
Notice that the data points appear to lie close to a straight line, so it's natural to choose a linear model in this case. But there are many possible lines that approximate these data points, so which one should we use? One possibility is the line that passes through the first and last data points. The slope of this line is

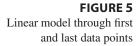
$$\frac{393.8 - 338.7}{2012 - 1980} = \frac{55.1}{32} = 1.721875 \approx 1.722$$

We write its equation as

$$C - 338.7 = 1.722(t - 1980)$$

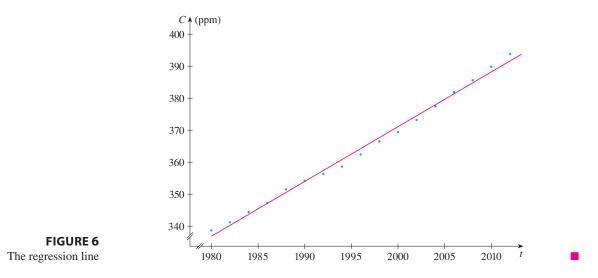

or


1


C = 1.722t - 3070.86

25

FIGURE 3


A computer or graphing calculator finds the regression line by the method of **least squares**, which is to minimize the sum of the squares of the vertical distances between the data points and the line. The details are explained in Section 14.7. Notice that our model gives values higher than most of the actual CO_2 levels. A better linear model is obtained by a procedure from statistics called *linear regression*. If we use a graphing calculator, we enter the data from Table 1 into the data editor and choose the linear regression command. (With Maple we use the fit[leastsquare] command in the stats package; with Mathematica we use the Fit command.) The machine gives the slope and y-intercept of the regression line as

$$m = 1.71262$$
 $b = -3054.14$

So our least squares model for the CO₂ level is

2
$$C = 1.71262t - 3054.14$$

In Figure 6 we graph the regression line as well as the data points. Comparing with Figure 5, we see that it gives a better fit than our previous linear model.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 3 Use the linear model given by Equation 2 to estimate the average CO_2 level for 1987 and to predict the level for the year 2020. According to this model, when will the CO_2 level exceed 420 parts per million?

SOLUTION Using Equation 2 with t = 1987, we estimate that the average CO₂ level in 1987 was

$$C(1987) = (1.71262)(1987) - 3054.14 \approx 348.84$$

This is an example of *interpolation* because we have estimated a value *between* observed values. (In fact, the Mauna Loa Observatory reported that the average CO₂ level in 1987 was 348.93 ppm, so our estimate is quite accurate.)

With t = 2020, we get

$$C(2020) = (1.71262)(2020) - 3054.14 \approx 405.35$$

So we predict that the average CO_2 level in the year 2020 will be 405.4 ppm. This is an example of *extrapolation* because we have predicted a value *outside* the time frame of observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the CO₂ level exceeds 420 ppm when

$$1.71262t - 3054.14 > 420$$

Solving this inequality, we get

$$t > \frac{3474.14}{1.71262} \approx 2028.55$$

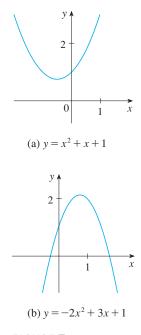
We therefore predict that the CO_2 level will exceed 420 ppm by the year 2029. This prediction is risky because it involves a time quite remote from our observations. In fact, we see from Figure 6 that the trend has been for CO_2 levels to increase rather more rapidly in recent years, so the level might exceed 420 ppm well before 2029.

Polynomials

A function P is called a **polynomial** if

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

where *n* is a nonnegative integer and the numbers $a_0, a_1, a_2, \ldots, a_n$ are constants called the **coefficients** of the polynomial. The domain of any polynomial is $\mathbb{R} = (-\infty, \infty)$. If the leading coefficient $a_n \neq 0$, then the **degree** of the polynomial is *n*. For example, the function


$$P(x) = 2x^6 - x^4 + \frac{2}{5}x^3 + \sqrt{2}$$

is a polynomial of degree 6.

A polynomial of degree 1 is of the form P(x) = mx + b and so it is a linear function. A polynomial of degree 2 is of the form $P(x) = ax^2 + bx + c$ and is called a **quadratic function**. Its graph is always a parabola obtained by shifting the parabola $y = ax^2$, as we will see in the next section. The parabola opens upward if a > 0 and downward if a < 0. (See Figure 7.)

A polynomial of degree 3 is of the form

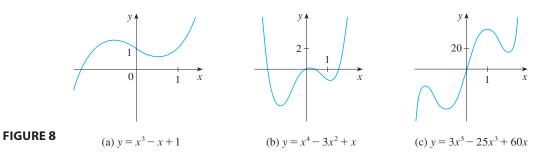
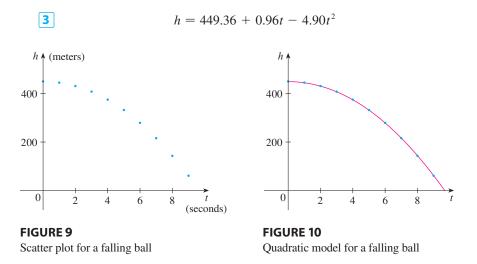

$$P(x) = ax^3 + bx^2 + cx + d \qquad a \neq 0$$

FIGURE 7 The graphs of quadratic functions are parabolas.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


and is called a **cubic function**. Figure 8 shows the graph of a cubic function in part (a) and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why the graphs have these shapes.

Polynomials are commonly used to model various quantities that occur in the natural and social sciences. For instance, in Section 2.7 we will explain why economists often use a polynomial P(x) to represent the cost of producing x units of a commodity. In the following example we use a quadratic function to model the fall of a ball.

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower, 450 m above the ground, and its height h above the ground is recorded at 1-second intervals in Table 2. Find a model to fit the data and use the model to predict the time at which the ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear model is inappropriate. But it looks as if the data points might lie on a parabola, so we try a quadratic model instead. Using a graphing calculator or computer algebra system (which uses the least squares method), we obtain the following quadratic model:

In Figure 10 we plot the graph of Equation 3 together with the data points and see that the quadratic model gives a very good fit.

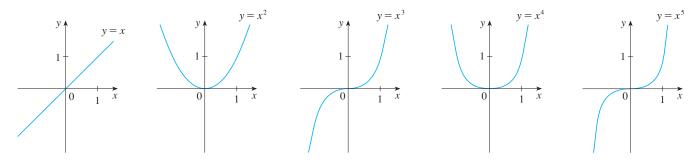
The ball hits the ground when h = 0, so we solve the quadratic equation

 $-4.90t^2 + 0.96t + 449.36 = 0$

Table 2		
Time (seconds)	Height (meters)	
0	450	
1	445	
2	431	
3	408	
4	375	
5	332	
6	279	
7	216	
8	143	
9	61	

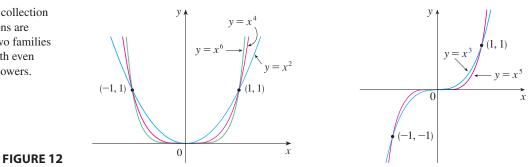
The quadratic formula gives

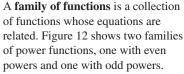
$$t = \frac{-0.96 \pm \sqrt{(0.96)^2 - 4(-4.90)(449.36)}}{2(-4.90)}$$


The positive root is $t \approx 9.67$, so we predict that the ball will hit the ground after about 9.7 seconds.

Power Functions

A function of the form $f(x) = x^a$, where *a* is a constant, is called a **power function**. We consider several cases.


(i) a = n, where *n* is a positive integer


The graphs of $f(x) = x^n$ for n = 1, 2, 3, 4, and 5 are shown in Figure 11. (These are polynomials with only one term.) We already know the shape of the graphs of y = x (a line through the origin with slope 1) and $y = x^2$ [a parabola, see Example 1.1.2(b)].

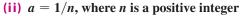


FIGURE 11 Graphs of $f(x) = x^n$ for n = 1, 2, 3, 4, 5

The general shape of the graph of $f(x) = x^n$ depends on whether *n* is even or odd. If *n* is even, then $f(x) = x^n$ is an even function and its graph is similar to the parabola $y = x^2$. If *n* is odd, then $f(x) = x^n$ is an odd function and its graph is similar to that of $y = x^3$. Notice from Figure 12, however, that as *n* increases, the graph of $y = x^n$ becomes flatter near 0 and steeper when $|x| \ge 1$. (If *x* is small, then x^2 is smaller, x^3 is even smaller, x^4 is smaller still, and so on.)

The function $f(x) = x^{1/n} = \sqrt[n]{x}$ is a **root function**. For n = 2 it is the square root function $f(x) = \sqrt{x}$, whose domain is $[0, \infty)$ and whose graph is the upper half of the

parabola $x = y^2$. [See Figure 13(a).] For other even values of *n*, the graph of $y = \sqrt[n]{x}$ is similar to that of $y = \sqrt{x}$. For n = 3 we have the cube root function $f(x) = \sqrt[3]{x}$ whose domain is \mathbb{R} (recall that every real number has a cube root) and whose graph is shown in Figure 13(b). The graph of $y = \sqrt[n]{x}$ for *n* odd (*n* > 3) is similar to that of $y = \sqrt[3]{x}$.

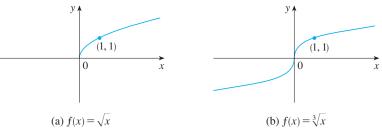


FIGURE 13 Graphs of root functions

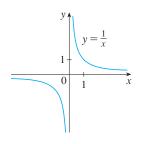


FIGURE 14 The reciprocal function

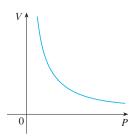
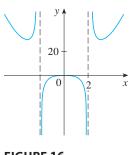



FIGURE 15 Volume as a function of pressure at constant temperature

FIGURE 16 $f(x) = \frac{2x^4 - x^2 + 1}{x^2 - 4}$

(iii) a = -1

The graph of the **reciprocal function** $f(x) = x^{-1} = 1/x$ is shown in Figure 14. Its graph has the equation y = 1/x, or xy = 1, and is a hyperbola with the coordinate axes as its asymptotes. This function arises in physics and chemistry in connection with Boyle's Law, which says that, when the temperature is constant, the volume V of a gas is inversely proportional to the pressure *P*:

$$V = \frac{C}{P}$$

where C is a constant. Thus the graph of V as a function of P (see Figure 15) has the same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 30–31), illumination as a function of distance from a light source (Exercise 29), and the period of revolution of a planet as a function of its distance from the sun (Exercise 32).

Rational Functions

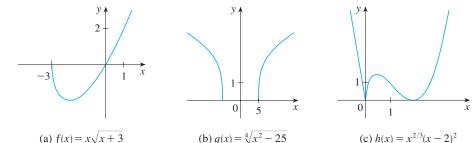
A **rational function** *f* is a ratio of two polynomials:

$$f(x) = \frac{P(x)}{Q(x)}$$

where P and Q are polynomials. The domain consists of all values of x such that $Q(x) \neq 0$. A simple example of a rational function is the function f(x) = 1/x, whose domain is $\{x \mid x \neq 0\}$; this is the reciprocal function graphed in Figure 14. The function

$$f(x) = \frac{2x^4 - x^2 + 1}{x^2 - 4}$$

is a rational function with domain $\{x \mid x \neq \pm 2\}$. Its graph is shown in Figure 16.

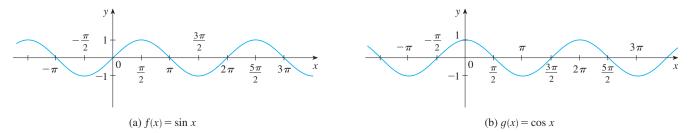

Algebraic Functions

f

A function f is called an **algebraic function** if it can be constructed using algebraic operations (such as addition, subtraction, multiplication, division, and taking roots) starting with polynomials. Any rational function is automatically an algebraic function. Here are two more examples:

$$(x) = \sqrt{x^2 + 1} \qquad g(x) = \frac{x^4 - 16x^2}{x + \sqrt{x}} + (x - 2)\sqrt[3]{x + 1}$$

When we sketch algebraic functions in Chapter 3, we will see that their graphs can assume a variety of shapes. Figure 17 illustrates some of the possibilities.


An example of an algebraic function occurs in the theory of relativity. The mass of a particle with velocity v is

$$m = f(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

where m_0 is the rest mass of the particle and $c = 3.0 \times 10^5$ km/s is the speed of light in a vacuum.

Trigonometric Functions

Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also in Appendix D. In calculus the convention is that radian measure is always used (except when otherwise indicated). For example, when we use the function $f(x) = \sin x$, it is understood that sin x means the sine of the angle whose radian measure is x. Thus the graphs of the sine and cosine functions are as shown in Figure 18.

FIGURE 18

The Reference Pages are located at

the back of the book.

Notice that for both the sine and cosine functions the domain is $(-\infty, \infty)$ and the range is the closed interval [-1, 1]. Thus, for all values of *x*, we have

$$-1 \le \sin x \le 1$$
 $-1 \le \cos x \le 1$

or, in terms of absolute values,

 $|\sin x| \le 1$ $|\cos x| \le 1$

Also, the zeros of the sine function occur at the integer multiples of π ; that is,

 $\sin x = 0$ when $x = n\pi$ *n* an integer

An important property of the sine and cosine functions is that they are periodic functions and have period 2π . This means that, for all values of *x*,

$$\sin(x+2\pi) = \sin x \qquad \cos(x+2\pi) = \cos x$$

The periodic nature of these functions makes them suitable for modeling repetitive phenomena such as tides, vibrating springs, and sound waves. For instance, in Example 1.3.4 we will see that a reasonable model for the number of hours of daylight in Philadelphia t days after January 1 is given by the function

$$L(t) = 12 + 2.8 \sin\left[\frac{2\pi}{365}(t - 80)\right]$$

EXAMPLE 5 What is the domain of the function $f(x) = \frac{1}{1 - 2\cos x}$?

SOLUTION This function is defined for all values of *x* except for those that make the denominator 0. But

$$1 - 2\cos x = 0 \iff \cos x = \frac{1}{2} \iff x = \frac{\pi}{3} + 2n\pi \text{ or } x = \frac{5\pi}{3} + 2n\pi$$

where *n* is any integer (because the cosine function has period 2π). So the domain of *f* is the set of all real numbers except for the ones noted above.

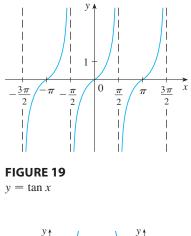
The tangent function is related to the sine and cosine functions by the equation

$$\tan x = \frac{\sin x}{\cos x}$$

and its graph is shown in Figure 19. It is undefined whenever $\cos x = 0$, that is, when $x = \pm \pi/2, \pm 3\pi/2, \ldots$. Its range is $(-\infty, \infty)$. Notice that the tangent function has period π :

$$\tan(x + \pi) = \tan x$$
 for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in Appendix D.


Exponential Functions

The **exponential functions** are the functions of the form $f(x) = b^x$, where the base *b* is a positive constant. The graphs of $y = 2^x$ and $y = (0.5)^x$ are shown in Figure 20. In both cases the domain is $(-\infty, \infty)$ and the range is $(0, \infty)$.

Exponential functions will be studied in detail in Chapter 6, and we will see that they are useful for modeling many natural phenomena, such as population growth (if b > 1) and radioactive decay (if b < 1).

Logarithmic Functions

The **logarithmic functions** $f(x) = \log_b x$, where the base *b* is a positive constant, are the inverse functions of the exponential functions. They will be studied in Chapter 6. Figure

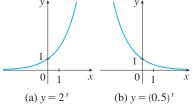
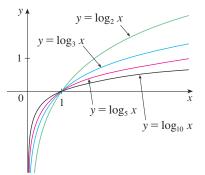



FIGURE 20

21 shows the graphs of four logarithmic functions with various bases. In each case the domain is $(0, \infty)$, the range is $(-\infty, \infty)$, and the function increases slowly when x > 1.

EXAMPLE 6 Classify the following functions as one of the types of functions that we have discussed.

(a)
$$f(x) = 5^x$$

(b) $g(x) = x^5$
(c) $h(x) = \frac{1+x}{1-\sqrt{x}}$
(d) $u(t) = 1 - t + 5t^4$

SOLUTION

(a) $f(x) = 5^x$ is an exponential function. (The x is the exponent.)

4. (a) y = 3x

(b) $g(x) = x^5$ is a power function. (The *x* is the base.) We could also consider it to be a polynomial of degree 5.

(c)
$$h(x) = \frac{1+x}{1-\sqrt{x}}$$
 is an algebraic function.
(d) $u(t) = 1 - t + 5t^4$ is a polynomial of degree 4.

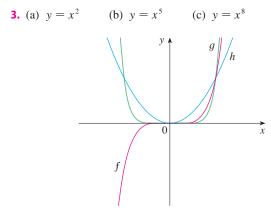

1.2 EXERCISES

FIGURE 21

1–2 Classify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.

1. (a)
$$f(x) = \log_2 x$$

(b) $g(x) = \sqrt[4]{x}$
(c) $h(x) = \frac{2x^3}{1 - x^2}$
(d) $u(t) = 1 - 1.1t + 2.54t^2$
(e) $v(t) = 5^t$
(f) $w(\theta) = \sin \theta \cos^2 \theta$
2. (a) $y = \pi^x$
(b) $y = x^{\pi}$
(c) $y = x^2(2 - x^3)$
(d) $y = \tan t - \cos t$
(e) $y = \frac{s}{1 + s}$
(f) $y = \frac{\sqrt{x^3 - 1}}{1 + \sqrt[3]{x}}$

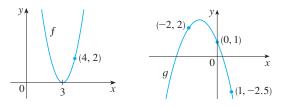
3–4 Match each equation with its graph. Explain your choices. (Don't use a computer or graphing calculator.)

f G

(c) $y = x^3$

(d) $y = \sqrt[3]{x}$

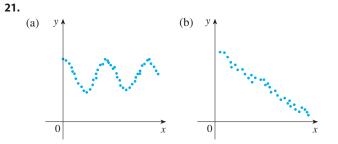
(b) $y = 3^x$

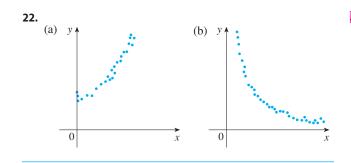

5–6 Find the domain of the function.

5.
$$f(x) = \frac{\cos x}{1 - \sin x}$$
 6. $g(x) = \frac{1}{1 - \tan x}$

- **7.** (a) Find an equation for the family of linear functions with slope 2 and sketch several members of the family.
 - (b) Find an equation for the family of linear functions such that f(2) = 1 and sketch several members of the family.
 - (c) Which function belongs to both families?
- 8. What do all members of the family of linear functions f(x) = 1 + m(x + 3) have in common? Sketch several members of the family.

33


- What do all members of the family of linear functions
 f(x) = c x have in common? Sketch several members of the family.
- **10.** Find expressions for the quadratic functions whose graphs are shown.



- **11.** Find an expression for a cubic function f if f(1) = 6 and f(-1) = f(0) = f(2) = 0.
- 12. Recent studies indicate that the average surface temperature of the earth has been rising steadily. Some scientists have modeled the temperature by the linear function T = 0.02t + 8.50, where *T* is temperature in °C and *t* represents years since 1900.
 - (a) What do the slope and *T*-intercept represent?
 - (b) Use the equation to predict the average global surface temperature in 2100.
- **13.** If the recommended adult dosage for a drug is D (in mg), then to determine the appropriate dosage c for a child of age a, pharmacists use the equation c = 0.0417D(a + 1). Suppose the dosage for an adult is 200 mg.
 - (a) Find the slope of the graph of c. What does it represent?
 - (b) What is the dosage for a newborn?
- 14. The manager of a weekend flea market knows from past experience that if he charges x dollars for a rental space at the market, then the number y of spaces he can rent is given by the equation y = 200 4x.
 - (a) Sketch a graph of this linear function. (Remember that the rental charge per space and the number of spaces rented can't be negative quantities.)
 - (b) What do the slope, the *y*-intercept, and the *x*-intercept of the graph represent?
- **15.** The relationship between the Fahrenheit (*F*) and Celsius (*C*) temperature scales is given by the linear function $F = \frac{9}{5}C + 32$.
 - (a) Sketch a graph of this function.
 - (b) What is the slope of the graph and what does it represent? What is the *F*-intercept and what does it represent?
- **16.** Jason leaves Detroit at 2:00 PM and drives at a constant speed west along I-94. He passes Ann Arbor, 40 mi from Detroit, at 2:50 PM.
 - (a) Express the distance traveled in terms of the time elapsed.
 - (b) Draw the graph of the equation in part (a).
 - (c) What is the slope of this line? What does it represent?

- 17. Biologists have noticed that the chirping rate of crickets of a certain species is related to temperature, and the relationship appears to be very nearly linear. A cricket produces 113 chirps per minute at 70°F and 173 chirps per minute at 80°F.
 - (a) Find a linear equation that models the temperature *T* as a function of the number of chirps per minute *N*.
 - (b) What is the slope of the graph? What does it represent?
 - (c) If the crickets are chirping at 150 chirps per minute, estimate the temperature.
- **18.** The manager of a furniture factory finds that it costs \$2200 to manufacture 100 chairs in one day and \$4800 to produce 300 chairs in one day.
 - (a) Express the cost as a function of the number of chairs produced, assuming that it is linear. Then sketch the graph.
 - (b) What is the slope of the graph and what does it represent?
 - (c) What is the *y*-intercept of the graph and what does it represent?
- 19. At the surface of the ocean, the water pressure is the same as the air pressure above the water, 15 lb/in². Below the surface, the water pressure increases by 4.34 lb/in² for every 10 ft of descent.
 - (a) Express the water pressure as a function of the depth below the ocean surface.
 - (b) At what depth is the pressure 100 lb/in^2 ?
- **20.** The monthly cost of driving a car depends on the number of miles driven. Lynn found that in May it cost her \$380 to drive 480 mi and in June it cost her \$460 to drive 800 mi.
 - (a) Express the monthly cost *C* as a function of the distance driven *d*, assuming that a linear relationship gives a suitable model.
 - (b) Use part (a) to predict the cost of driving 1500 miles per month.
 - (c) Draw the graph of the linear function. What does the slope represent?
 - (d) What does the C-intercept represent?
 - (e) Why does a linear function give a suitable model in this situation?

21–22 For each scatter plot, decide what type of function you might choose as a model for the data. Explain your choices.

23. The table shows (lifetime) peptic ulcer rates (per 100 population) for various family incomes as reported by the National Health Interview Survey.

Income	Ulcer rate (per 100 population)
\$4,000	14.1
\$6,000	13.0
\$8,000	13.4
\$12,000	12.5
\$16,000	12.0
\$20,000	12.4
\$30,000	10.5
\$45,000	9.4
\$60,000	8.2

- (a) Make a scatter plot of these data and decide whether a linear model is appropriate.
- (b) Find and graph a linear model using the first and last data points.
- (c) Find and graph the least squares regression line.
- (d) Use the linear model in part (c) to estimate the ulcer rate for an income of \$25,000.
- (e) According to the model, how likely is someone with an income of \$80,000 to suffer from peptic ulcers?
- (f) Do you think it would be reasonable to apply the model to someone with an income of \$200,000?
- 24. Biologists have observed that the chirping rate of crickets of a certain species appears to be related to temperature. The table shows the chirping rates for various temperatures.
 - (a) Make a scatter plot of the data.
 - (b) Find and graph the regression line.
 - (c) Use the linear model in part (b) to estimate the chirping rate at 100°F.

Temperature (°F)	Chirping rate (chirps/min)	Temperature (°F)	Chirping rate (chirps/min)
50	20	75	140
55	46	80	173
60	79	85	198
65	91	90	211
70	113		

- 25. Anthropologists use a linear model that relates human femur (thighbone) length to height. The model allows an anthropologist to determine the height of an individual when only a partial skeleton (including the femur) is found. Here we find the model by analyzing the data on femur length and height for the eight males given in the following table.
 - (a) Make a scatter plot of the data.
 - (b) Find and graph the regression line that models the data.
 - (c) An anthropologist finds a human femur of length 53 cm. How tall was the person?

Femur length (cm)	Height (cm)	Femur length (cm)	Height (cm)
50.1	178.5	44.5	168.3
48.3	173.6	42.7	165.0
45.2	164.8	39.5	155.4
44.7	163.7	38.0	155.8

- 26. When laboratory rats are exposed to asbestos fibers, some of them develop lung tumors. The table lists the results of several experiments by different scientists.
 - (a) Find the regression line for the data.
 - (b) Make a scatter plot and graph the regression line. Does the regression line appear to be a suitable model for the data?
 - (c) What does the *y*-intercept of the regression line represent?

Asbestos exposure (fibers/mL)	Percent of mice that develop lung tumors	Asbestos exposure (fibers/mL)	Percent of mice that develop lung tumors
50	2	1600	42
400	6	1800	37
500	5	2000	38
900	10	3000	50
1100	26		

- 27. The table shows world average daily oil consumption from 1985 to 2010 measured in thousands of barrels per day.
 - (a) Make a scatter plot and decide whether a linear model is appropriate.
 - (b) Find and graph the regression line.
 - (c) Use the linear model to estimate the oil consumption in 2002 and 2012.

Years since 1985	Thousands of barrels of oil per day	
0	60,083	
5	66,533	
10	70,099	
15	76,784	
20	84,077	
25	87,302	

Source: US Energy Information Administration

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

- 28. The table shows average US retail residential prices of electricity from 2000 to 2012, measured in cents per kilowatt hour.
 - (a) Make a scatter plot. Is a linear model appropriate?
 - (b) Find and graph the regression line.
 - (c) Use your linear model from part (b) to estimate the average retail price of electricity in 2005 and 2013.

Years since 2000	Cents/kWh
0	8.24
2	8.44
4	8.95
6	10.40
8	11.26
10	11.54
12	11.58

Source: US Energy Information Administration

- **29.** Many physical quantities are connected by *inverse square laws*, that is, by power functions of the form $f(x) = kx^{-2}$. In particular, the illumination of an object by a light source is inversely proportional to the square of the distance from the source. Suppose that after dark you are in a room with just one lamp and you are trying to read a book. The light is too dim and so you move halfway to the lamp. How much brighter is the light?
- 30. It makes sense that the larger the area of a region, the larger the number of species that inhabit the region. Many ecologists have modeled the species-area relation with a power function and, in particular, the number of species S of bats living in caves in central Mexico has been related to the surface area A of the caves by the equation S = 0.7A^{0.3}.
 (a) The cave called *Misión Imposible* near Puebla,
 - Mexico, has a surface area of $A = 60 \text{ m}^2$. How many species of bats would you expect to find in that cave?
 - (b) If you discover that four species of bats live in a cave, estimate the area of the cave.

- 31. The table shows the number N of species of reptiles and amphibians inhabiting Caribbean islands and the area A of the island in square miles.
 - (a) Use a power function to model N as a function of A.
 - (b) The Caribbean island of Dominica has area 291 mi². How many species of reptiles and amphibians would you expect to find on Dominica?

Island	Α	Ν
Saba	4	5
Monserrat	40	9
Puerto Rico	3,459	40
Jamaica	4,411	39
Hispaniola	29,418	84
Cuba	44,218	76

- 32. The table shows the mean (average) distances d of the planets from the sun (taking the unit of measurement to be the distance from planet Earth to the sun) and their periods T (time of revolution in years).
 - (a) Fit a power model to the data.
 - (b) Kepler's Third Law of Planetary Motion states that "The square of the period of revolution of a planet is proportional to the cube of its mean distance from the sun."

Does your model corroborate Kepler's Third Law?

Planet	d	Т
Mercury	0.387	0.241
Venus	0.723	0.615
Earth	1.000	1.000
Mars	1.523	1.881
Jupiter	5.203	11.861
Saturn	9.541	29.457
Uranus	19.190	84.008
Neptune	30.086	164.784

1.3 New Functions from Old Functions

In this section we start with the basic functions we discussed in Section 1.2 and obtain new functions by shifting, stretching, and reflecting their graphs. We also show how to combine pairs of functions by the standard arithmetic operations and by composition.

Transformations of Functions

By applying certain transformations to the graph of a given function we can obtain the graphs of related functions. This will give us the ability to sketch the graphs of many functions quickly by hand. It will also enable us to write equations for given graphs.

Let's first consider **translations**. If c is a positive number, then the graph of y = f(x) + c is just the graph of y = f(x) shifted upward a distance of c units (because each y-coordinate is increased by the same number c). Likewise, if g(x) = f(x - c), where c > 0, then the value of g at x is the same as the value of f at x - c (c units to the left of x). There-