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73–78 � Determine whether f  is even, odd, or neither. If you have  
a graphing calculator, use it to check your answer visually.

	73.	 f sxd −
x

x 2 1 1
	 74.	 f sxd −

x 2

x 4 1 1

	75.	 f sxd −
x

x 1 1
	 76.	 f sxd − x | x |

	77.	 f sxd − 1 1 3x 2 2 x 4

	78.	 f sxd − 1 1 3x 3 2 x 5

	79.	�� If f  and t are both even functions, is f 1 t even? If f  and t 
are both odd functions, is f 1 t odd? What if f  is even and t is 
odd? Justify your answers.

	80.	�� If f  and t are both even functions, is the product ft even? If f  
and t are both odd functions, is ft odd? What if f  is even and  
t is odd? Justify your answers.

A mathematical model is a mathematical description (often by means of a function or 
an equation) of a real-world phenomenon such as the size of a population, the demand 
for a product, the speed of a falling object, the concentration of a product in a chemical 
reaction, the life expectancy of a person at birth, or the cost of emission reductions. The 
purpose of the model is to understand the phenomenon and perhaps to make predictions 
about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world prob-
lem, our first task is to formulate a mathematical model by identifying and naming the 
independent and dependent variables and making assumptions that simplify the phenom-
enon enough to make it mathematically tractable. We use our knowledge of the physical 
situation and our mathematical skills to obtain equations that relate the variables. In 
situations where there is no physical law to guide us, we may need to collect data (either 
from a library or the Internet or by conducting our own experiments) and examine the 
data in the form of a table in order to discern patterns. From this numerical representation 
of a function we may wish to obtain a graphical representation by plotting the data. The 
graph might even suggest a suitable algebraic formula in some cases.

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret

The second stage is to apply the mathematics that we know (such as the calculus 
that will be developed throughout this book) to the mathematical model that we have 
formulated in order to derive mathematical conclusions. Then, in the third stage, we take 
those mathematical conclusions and interpret them as information about the original 
real-world phenomenon by way of offering explanations or making predictions. The final 
step is to test our predictions by checking against new real data. If the predictions don’t 
compare well with reality, we need to refine our model or to formulate a new model and 
start the cycle again.

A mathematical model is never a completely accurate representation of a physical 
situation—it is an idealization. A good model simplifies reality enough to permit math-

FIGURE 1
The modeling process
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24	 Chapter 1    Functions and Limits

ematical calculations but is accurate enough to provide valuable conclusions. It is impor-
tant to realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships  
observed in the real world. In what follows, we discuss the behavior and graphs of these  
functions and give examples of situations appropriately modeled by such functions.

Linear Models
When we say that y is a linear function of x, we mean that the graph of the function is 
a line, so we can use the slope-intercept form of the equation of a line to write a formula 
for the function as

y − f sxd − mx 1 b

where m is the slope of the line and b is the y-intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For 

instance, Figure 2 shows a graph of the linear function f sxd − 3x 2 2 and a table of 
sample values. Notice that whenever x increases by 0.1, the value of f sxd increases by 
0.3. So f sxd increases three times as fast as x. Thus the slope of the graph of y − 3x 2 2, 
namely 3, can be interpreted as the rate of change of y with respect to x.

x

y

0

y=3x-2

_2

1

x f sxd − 3x 2 2

1.0 1.0
1.1 1.3
1.2 1.6
1.3 1.9
1.4 2.2
1.5 2.5

Example �1� �
(a)  As dry air moves upward, it expands and cools. If the ground temperature is 20°C 
and the temperature at a height of 1 km is 10°C, express the temperature T  (in °C) as a 
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b)  Draw the graph of the function in part (a). What does the slope represent?
(c)  What is the temperature at a height of 2.5 km?

SOLUTION
(a)  Because we are assuming that T  is a linear function of h, we can write

T − mh 1 b

We are given that T − 20 when h − 0, so 

20 − m � 0 1 b − b

�In other words, the y-intercept is b − 20.
We are also given that T − 10 when h − 1, so

10 − m � 1 1 20

The slope of the line is therefore m − 10 2 20 − 210 and the required linear function is

T − 210h 1 20

The coordinate geometry of lines is 
reviewed in Appendix B.

figure 2
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�(b)  The graph is sketched in Figure 3. The slope is m − 2 10°Cykm, and this repre- 
sents the rate of change of temperature with respect to height.

�(c)  At a height of h − 2.5 km, the temperature is

	 T − 210s2.5d 1 20 − 2 5°C	 ■

If there is no physical law or principle to help us formulate a model, we construct an 
empirical model, which is based entirely on collected data. We seek a curve that “fits” 
the data in the sense that it captures the basic trend of the data points.

Example �2 � Table 1 lists the average carbon dioxide level in the atmosphere, mea-
sured in parts per million at Mauna Loa Observatory from 1980 to 2012. Use the data 
in Table 1 to find a model for the carbon dioxide level.

SOLUTION � We use the data in Table 1 to make the scatter plot in Figure 4, where t rep-
resents time (in years) and C represents the CO2 level (in parts per million, ppm).

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

FIGURE 4 � Scatter plot for the average CO2 level �

Notice that the data points appear to lie close to a straight line, so it’s natural to 
choose a linear model in this case. But there are many possible lines that approximate 
these data points, so which one should we use? One possibility is the line that passes 
through the first and last data points. The slope of this line is

393.8 2 338.7

2012 2 1980
−

55.1

32
− 1.721875 < 1.722

We write its equation as 	

C 2 338.7 − 1.722st 2 1980d
or

1 	 C − 1.722t 2 3070.86

FIGURE 3 

T=_10h+20

T

h0

10

20

1 3

Year
CO2 level
(in ppm) Year

CO2 level
(in ppm)

1980 338.7 1998 366.5
1982 341.2 2000 369.4
1984 344.4 2002 373.2
1986 347.2 2004 377.5
1988 351.5 2006 381.9
1990 354.2 2008 385.6
1992 356.3 2010 389.9
1994 358.6 2012 393.8
1996 362.4

Table 1�
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26	 Chapter 1    Functions and Limits

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed 
in Figure 5.

C (ppm)
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Notice that our model gives values higher than most of the actual CO2 levels. A 
better linear model is obtained by a procedure from statistics called linear regression. 
If we use a graphing calculator, we enter the data from Table 1 into the data editor and 
choose the linear regression command. (With Maple we use the fit[leastsquare] com-
mand in the stats package; with Mathematica we use the Fit command.) The machine 
gives the slope and y-intercept of the regression line as

m − 1.71262            b − 23054.14

So our least squares model for the CO2 level is

2 	 C − 1.71262t 2 3054.14

In Figure 6 we graph the regression line as well as the data points. Comparing with 
Figure 5, we see that it gives a better fit than our previous linear model.

	

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010 	 ■

FIGURE 5�  
Linear model through first  

and last data points�

A computer or graphing calculator 
finds the regression line by the method 
of least squares, which is to minimize 
the sum of the squares of the vertical 
distances between the data points and 
the line. The details are explained in 
Section 14.7.

Figure 6�  
The regression line
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Example �3�  Use the linear model given by Equation 2 to estimate the average CO2 
level for 1987 and to predict the level for the year 2020. According to this model, when 
will the CO2 level exceed 420 parts per million?

Solution � Using Equation 2 with t − 1987, we estimate that the average CO2 level in 
1987 was

Cs1987d − s1.71262ds1987d 2 3054.14 < 348.84

This is an example of interpolation because we have estimated a value between 
observed values. (In fact, the Mauna Loa Observatory reported that the average CO2 
level in 1987 was 348.93 ppm, so our estimate is quite accurate.)

With t − 2020, we get

Cs2020d − s1.71262ds2020d 2 3054.14 < 405.35

So we predict that the average CO2 level in the year 2020 will be 405.4 ppm. This is an 
example of extrapolation because we have predicted a value outside the time frame of 
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the CO2 level exceeds 420 ppm when

1.71262t 2 3054.14 . 420

Solving this inequality, we get

t .
3474.14

1.71262
< 2028.55

We therefore predict that the CO2 level will exceed 420 ppm by the year 2029. This  
prediction is risky because it involves a time quite remote from our observations. In 
fact, we see from Figure 6 that the trend has been for CO2 levels to increase rather more 
rapidly in recent years, so the level might exceed 420 ppm well before 2029.	 ■

Polynomials
A function P is called a polynomial if

Psxd − an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a2 x 2 1 a1 x 1 a0

where n is a nonnegative integer and the numbers a0, a1, a2, . . . , an are constants called 
the coefficients of the polynomial. The domain of any polynomial is R − s2`, `d.  
If the leading coefficient an ± 0, then the degree of the polynomial is n. For example, 
the function

Psxd − 2x 6 2 x 4 1 2
5 x 3 1 s2 

is a polynomial of degree 6.
A polynomial of degree 1 is of the form Psxd − mx 1 b and so it is a linear function.  

A polynomial of degree 2 is of the form Psxd − ax 2 1 bx 1 c and is called a quadratic 
function. Its graph is always a parabola obtained by shifting the parabola y − ax 2, as we 
will see in the next section. The parabola opens upward if a . 0 and downward if a , 0.  
(See Figure 7.)

A polynomial of degree 3 is of the form

Psxd − ax 3 1 bx 2 1 cx 1 d        a ± 0

FIGURE 7�  
The graphs of quadratic functions  
are parabolas.
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(a) y=≈+x+1

y

2

x1

(b) y=_2≈+3x+1

40621_ch01_ptg1_hr_025-051.indd   27 4/13/15   10:26 AM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



28	 Chapter 1    Functions and Limits

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) 
and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why 
the graphs have these shapes.

(a) y=˛-x+1

x

1

y

10

(b) y=x$-3≈+x

x

2

y

1

(c) y=3x%-25˛+60x

x

20

y

1

Polynomials are commonly used to model various quantities that occur in the natural 
and social sciences. For instance, in Section 2.7 we will explain why economists often use  
a polynomial Psxd to represent the cost of producing x units of a commodity. In the fol-
lowing example we use a quadratic function to model the fall of a ball.

Example �4�  A ball is dropped from the upper observation deck of the CN Tower, 450 m 
above the ground, and its height h above the ground is recorded at 1-second intervals in 
Table 2. Find a model to fit the data and use the model to predict the time at which the 
ball hits the ground.

Solution � We draw a scatter plot of the data in Figure 9 and observe that a linear 
model is inappropriate. But it looks as if the data points might lie on a parabola, so we 
try a quadratic model instead. Using a graphing calculator or computer algebra system 
(which uses the least squares method), we obtain the following quadratic model:

	 3 	 h − 449.36 1 0.96t 2 4.90t 2

2

200

400

4 6 8 t0

200

400

t
(seconds)

0 2 4 6 8

hh (meters)

In Figure 10 we plot the graph of Equation 3 together with the data points and see 
that the quadratic model gives a very good fit.

The ball hits the ground when h − 0, so we solve the quadratic equation

24.90t 2 1 0.96t 1 449.36 − 0

FIGURE 8� 

Time 
(seconds)

Height 
(meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61

Table 2�

FIGURE 9 �  
Scatter plot for a falling ball

FIGURE 10 �  
Quadratic model for a falling ball
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The quadratic formula gives

t −
20.96 6 ss0.96d2 2 4s24.90d s449.36d

2s24.90d

The positive root is t < 9.67, so we predict that the ball will hit the ground after about 
9.7 seconds.	 ■

Power Functions
A function of the form f sxd − xa, where a is a constant, is called a power function. We 
consider several cases.

(i )  a − n, where n is a positive integer

The graphs of f sxd − xn for n − 1, 2, 3, 4, and 5 are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of y − x (a line 
through the origin with slope 1) and y − x 2 [a parabola, see Example 1.1.2(b)].
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The general shape of the graph of f sxd − xn depends on whether n is even or odd. 
If n is even, then f sxd − xn is an even function and its graph is similar to the parabola 
y − x 2. If n is odd, then f sxd − xn is an odd function and its graph is similar to that 
of y − x 3. Notice from Figure 12, however, that as n increases, the graph of y − xn 
becomes flatter near 0 and steeper when | x | > 1. (If x is small, then x 2 is smaller, x 3  
is even smaller, x 4 is smaller still, and so on.)

y=x$

(1, 1)(_1, 1)

y=x^
y=≈

(_1, _1)

(1, 1)

0

y

x

x

y

0

y=x#

y=x%

(i i)  a − 1yn, where n is a positive integer

The function f sxd − x 1yn − sn x  is a root function. For n − 2 it is the square root  
function f sxd − sx  , whose domain is f0, `d and whose graph is the upper half of the  

FIGURE 11 � Graphs of f sxd − x n for n − 1, 2, 3, 4, 5

A family of functions is a collection  
of functions whose equations are 
related. Figure 12 shows two families  
of power functions, one with even  
powers and one with odd powers.

FIGURE 12 �
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30	 Chapter 1    Functions and Limits

parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .

(b) ƒ=Œ„x

x

y

0

(1, 1)

(a) ƒ=œ„x

x

y

0

(1, 1)

(iii)  a − 21
The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its 
graph has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes 
as its asymptotes. This function arises in physics and chemistry in connection with 
Boyle’s Law, which says that, when the temperature is constant, the volume V  of a gas 
is inversely proportional to the pressure P:

V −
C

P

where C is a constant. Thus the graph of V  as a function of P (see Figure 15) has the 
same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 30–31), 
illumination as a function of distance from a light source (Exercise 29), and the period 
of revolution of a planet as a function of its distance from the sun (Exercise 32).

Rational Functions
A rational function f  is a ratio of two polynomials:

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain consists of all values of x such that Qsxd ± 0. 
A simple example of a rational function is the function f sxd − 1yx, whose domain is 
hx | x ± 0j; this is the reciprocal function graphed in Figure 14. The function

f sxd −
2x 4 2 x 2 1 1

x 2 2 4

is a rational function with domain hx | x ± 62j. Its graph is shown in Figure 16.

Algebraic Functions
A function f  is called an algebraic function if it can be constructed using algebraic 
operations (such as addition, subtraction, multiplication, division, and taking roots) start-
ing with polynomials. Any rational function is automatically an algebraic function. Here 
are two more examples:

f sxd − sx 2 1 1            tsxd −
x 4 2 16x 2

x 1 sx 
1 sx 2 2ds3 x 1 1 

FIGURE 13 � 
Graphs of root functions
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Figure �14
The reciprocal function
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Figure �15
Volume as a function of pressure  
at constant temperature
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FIGURE 16 
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When we sketch algebraic functions in Chapter 3, we will see that their graphs can 
assume a variety of shapes. Figure 17 illustrates some of the possibilities.
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(a) ƒ=xœ„„„„x+3
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(b) ©=$œ„„„„„„≈-25

x

1

y

10

(c) h(x)=x@?#(x-2)@

_3

An example of an algebraic function occurs in the theory of relativity. The mass of a 
particle with velocity v is

m − f svd −
m0

s1 2 v 2yc 2 

where m0 is the rest mass of the particle and c − 3.0 3 105 kmys is the speed of light in a  
vacuum.

Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also 
in Appendix D. In calculus the convention is that radian measure is always used (except 
when otherwise indicated). For example, when we use the function f sxd − sin x, it is  
understood that sin x means the sine of the angle whose radian measure is x. Thus the 
graphs of the sine and cosine functions are as shown in Figure 18.

(a) ƒ=sin x
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Notice that for both the sine and cosine functions the domain is s2`, `d and the range 
is the closed interval f21, 1g. Thus, for all values of x, we have

21 < sin x < 1            21 < cos x < 1

or, in terms of absolute values,

| sin x | < 1            | cos x | < 1

Also, the zeros of the sine function occur at the integer multiples of �; that is,

sin x − 0        when        x − n�    n an integer

FIGURE 17

The Reference Pages are located at 
the back of the book.

FIGURE 18
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32	 Chapter 1    Functions and Limits

An important property of the sine and cosine functions is that they are periodic func-
tions and have period 2�. This means that, for all values of x,

 
sinsx 1 2�d − sin x            cossx 1 2�d − cos x

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 1.3.4  
we will see that a reasonable model for the number of hours of daylight in Philadelphia 
t days after January 1 is given by the function

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

Example �5�  What is the domain of the function  f sxd −
1

1 2 2 cos x
?

Solution � This function is defined for all values of x except for those that make the 
denominator 0. But

1 2 2 cos x − 0   &?   cos x −
1

2
    &?   x −

�

3
 1 2n�    or    x −

5�

3
 1 2n�

where n is any integer (because the cosine function has period 2�). So the domain of f  
is the set of all real numbers except for the ones noted above. 	 ■

The tangent function is related to the sine and cosine functions by the equation

tan x −
sin x

cos x

and its graph is shown in Figure 19. It is undefined whenever cos x − 0, that is, when 
x − 6�y2, 63�y2, . . . . Its range is s2`, `d. Notice that the tangent function has period �:

tansx 1 �d − tan x        for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are  
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in  
Appendix D.

Exponential Functions
The exponential functions are the functions of the form f sxd − bx, where the base b is  
a positive constant. The graphs of y − 2x and y − s0.5dx are shown in Figure 20. In both 
cases the domain is s2`, `d and the range is s0, `d.

Exponential functions will be studied in detail in Chapter 6, and we will see that they  
are useful for modeling many natural phenomena, such as population growth (if b . 1)  
and radioactive decay (if b , 1d.

Logarithmic Functions
The logarithmic functions f sxd − logb x, where the base b is a positive constant, are the  
inverse functions of the exponential functions. They will be studied in Chapter 6. Figure 

figure 19
y − tan xy=tan x
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figure 20
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21 shows the graphs of four logarithmic functions with various bases. In each case the 
domain is s0, `d, the range is s2`, `d, and the function increases slowly when x . 1.

Example �6�  Classify the following functions as one of the types of functions that we 
have discussed.

(a)  f sxd − 5x	 (b)  tsxd − x 5

(c)  hsxd −
1 1 x

1 2 sx 
	 (d)  ustd − 1 2 t 1 5t 4

SOLUTION  

(a)  f sxd − 5x is an exponential function. (The x is the exponent.)

(b)  tsxd − x 5 is a power function. (The x is the base.) We could also consider it to be a 
polynomial of degree 5.

(c)  hsxd −
1 1 x

1 2 sx 
 is an algebraic function.

(d)  ustd − 1 2 t 1 5t 4 is a polynomial of degree 4.	 ■

1. 2 � Exercises

1–2�  Classify each function as a power function, root function, 
polynomial (state its degree), rational function, algebraic function, 
trigonometric function, exponential function, or logarithmic function.

	 1.	� (a)	 f sxd − log2 x	 (b)	 tsxd − s4 x 

		�  (c)	 hsxd −
2x 3

1 2 x 2 	 (d)	 ustd − 1 2 1.1t 1 2.54t 2

		�  (e)	 vstd − 5 t	 (f )	 ws�d − sin � cos2�

	 2.	� (a)	 y − � x	 (b)	 y − x�

		�  (c)	 y − x 2s2 2 x 3d	 (d)	 y − tan t 2 cos t

		�  (e)	 y −
s

1 1 s
	 (f )	 y −

sx 3 2 1

1 1 s3 x 

3–4�  Match each equation with its graph. Explain your choices. 
(Don’t use a computer or graphing calculator.)

	 3.	� (a)	 y − x 2          (b)	 y − x 5          (c)	 y − x 8

f

0

g
h

y

x

	4 .	� (a)	 y − 3x	 (b)	 y − 3x	 (c)	 y − x 3	 (d)	 y − s3 x 

G

f

g

F
y

x

5–6 � Find the domain of the function.

	5 .	  f sxd −
cos x 

1 2 sin x
	6 .	  tsxd −

1

1 2 tan x

	 7.	� (a)	�	 Find an equation for the family of linear functions with 
slope 2 and sketch several members of the family.

	 (b)	� Find an equation for the family of linear functions such 
that f s2d − 1 and sketch several members of the family.

	 (c)	� Which function belongs to both families?

	 8.	�� What do all members of the family of linear functions 
f sxd − 1 1 msx 1 3d have in common? Sketch several 
members of the family.

0

y

1

x1

y=log£ x

y=log™ x

y=log∞ x
y=log¡¸ x

figure 21
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34	 Chapter 1    Functions and Limits

	 9.	�� What do all members of the family of linear functions 
f sxd − c 2 x have in common? Sketch several members of 
the family.

	10.	�� Find expressions for the quadratic functions whose graphs 
are shown.

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

	11.	�� Find an expression for a cubic function f  if f s1d − 6 and 
f s21d − f s0d − f s2d − 0.

	12.	� �Recent studies indicate that the average surface tempera- 
ture of the earth has been rising steadily. Some scientists  
have modeled the temperature by the linear function 
T − 0.02t 1 8.50, where T is temperature in °C and t  
represents years since 1900.

	 (a)	� What do the slope and T-intercept represent?
	 (b)	� Use the equation to predict the average global surface  

temperature in 2100.

	13.	�� If the recommended adult dosage for a drug is D (in mg), 
then to determine the appropriate dosage c for a child of 
age a, pharmacists use the equation c − 0.0417Dsa 1 1d. 
Suppose the dosage for an adult is 200 mg.

	 (a)	� Find the slope of the graph of c. What does it represent?
	 (b)	� What is the dosage for a newborn?

	14.	�� The manager of a weekend flea market knows from past 
experience that if he charges x dollars for a rental space at 
the market, then the number y of spaces he can rent is given 
by the equation y − 200 2 4x.

	 (a)	� Sketch a graph of this linear function. (Remember that 
the rental charge per space and the number of spaces 
rented can’t be negative quantities.)

	 (b)	� What do the slope, the y-intercept, and the x-intercept of 
the graph represent?

	15.	�� The relationship between the Fahrenheit sFd and Celsius 
sCd temperature scales is given by the linear function 
F − 9

5 C 1 32.
	 (a)	 Sketch a graph of this function.
	 (b)	� What is the slope of the graph and what does it repre-

sent? What is the F-intercept and what does it represent?

	16.	� �Jason leaves Detroit at 2:00 pm and drives at a constant speed 
west along I-94. He passes Ann Arbor, 40 mi from Detroit, at 
2:50 pm.

	 (a)	� Express the distance traveled in terms of the time 
elapsed.

	 (b)	� Draw the graph of the equation in part (a).
	 (c)	� What is the slope of this line? What does it represent?

	17.	� ��Biologists have noticed that the chirping rate of crickets of 
a certain species is related to temperature, and the relation-
ship appears to be very nearly linear. A cricket produces 
113 chirps per minute at 70°F and 173 chirps per minute  
at 80°F.

	 (a)	� Find a linear equation that models the temperature T as  
a function of the number of chirps per minute N.

	 (b)	� What is the slope of the graph? What does it represent?
	 (c)	� If the crickets are chirping at 150 chirps per minute, 

estimate the temperature.

	18.	� �The manager of a furniture factory finds that it costs $2200 
to manufacture 100 chairs in one day and $4800 to produce 
300 chairs in one day.

	 (a)	� Express the cost as a function of the number of chairs 
produced, assuming that it is linear. Then sketch the 
graph.

	 (b)	� What is the slope of the graph and what does it represent?
	 (c)	� What is the y-intercept of the graph and what does it  

represent?

	19.	� �At the surface of the ocean, the water pressure is the same  
as the air pressure above the water, 15 lbyin2. Below the sur- 
face, the water pressure increases by 4.34 lbyin2 for every  
10 ft of descent.

	 (a)	� Express the water pressure as a function of the depth 
below the ocean surface.

	 (b)	� At what depth is the pressure 100 lbyin2?

	20.	� �The monthly cost of driving a car depends on the number 
of miles driven. Lynn found that in May it cost her $380 to 
drive 480 mi and in June it cost her $460 to drive 800 mi.

	 (a)	� Express the monthly cost C as a function of the distance 
driven d, assuming that a linear relationship gives a 
suitable model.

	 (b)	�� Use part (a) to predict the cost of driving 1500 miles per 
month.

	 (c)	�� Draw the graph of the linear function. What does the 
slope represent?

	 (d)	� What does the C-intercept represent?
	 (e)	� Why does a linear function give a suitable model in this  

situation?

	�21–22 � For each scatter plot, decide what type of function you 
might choose as a model for the data. Explain your choices.

	21.	�

0 x

y(a)

  0 x

y(b)
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	22.	

0 x

y(a)

  0 x

y(b)

	23.	� �The table shows (lifetime) peptic ulcer rates (per 100 popula-
tion) for various family incomes as reported by the National 
Health Interview Survey.

Income
Ulcer rate  

(per 100 population)

$4,000 	 14.1
$6,000 	 13.0
$8,000 	 13.4

$12,000 	 12.5
$16,000 	 12.0
$20,000 	 12.4
$30,000 	 10.5
$45,000 	 9.4
$60,000 	 8.2

	 (a)	� Make a scatter plot of these data and decide whether a  
linear model is appropriate.

	 (b)	� Find and graph a linear model using the first and last 
data points.

	 (c)	 Find and graph the least squares regression line.
	 (d)	� Use the linear model in part (c) to estimate the ulcer 

rate for an income of $25,000.
	 (e)	� According to the model, how likely is someone with an 

income of $80,000 to suffer from peptic ulcers?
	 (f )	� Do you think it would be reasonable to apply the model 

to someone with an income of $200,000?

	24.	� �Biologists have observed that the chirping rate of crickets of 
a certain species appears to be related to temperature. The 
table shows the chirping rates for various temperatures.

	 (a)	 Make a scatter plot of the data.
	 (b)	 Find and graph the regression line.
	 (c)	� Use the linear model in part (b) to estimate the chirping 

rate at 100°F.

Temperature 
(°F)

Chirping rate 
(chirpsymin)

Temperature 
(°F)

Chirping rate 
(chirpsymin)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113

;

;

	25.�	� Anthropologists use a linear model that relates human femur 
(thighbone) length to height. The model allows an anthro-
pologist to determine the height of an individual when only a 
partial skeleton (including the femur) is found. Here we find 
the model by analyzing the data on femur length and height 
for the eight males given in the following table.

	 (a)	� Make a scatter plot of the data.
	 (b)	 Find and graph the regression line that models the data.
	 (c)	� An anthropologist finds a human femur of length  

53 cm. How tall was the person?

Femur length 
(cm)

Height 
(cm)

Femur length 
(cm)

Height 
(cm)

50.1 178.5 44.5 168.3
48.3 173.6 42.7 165.0
45.2 164.8 39.5 155.4
44.7 163.7 38.0 155.8

	26.	�� When laboratory rats are exposed to asbestos fibers, some 
of them develop lung tumors. The table lists the results of 
several experiments by different scientists.

	 (a)	� Find the regression line for the data.
	 (b)	� Make a scatter plot and graph the regression line.  

Does the regression line appear to be a suitable model 
for the data?

	 (c)	� What does the y-intercept of the regression line represent?

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

50 2 1600 42
400 6 1800 37
500 5 2000 38
900 10 3000 50

1100 26

	27.	�� The table shows world average daily oil consumption from 
1985 to 2010 measured in thousands of barrels per day.

	 (a)	� Make a scatter plot and decide whether a linear model 
is appropriate.

	 (b)	� Find and graph the regression line.
	 (c)	� Use the linear model to estimate the oil consumption in 

2002 and 2012.

Years  
since 1985

Thousands of barrels  
of oil per day

0 60,083
5 66,533

10 70,099
15 76,784
20 84,077
25 87,302

Source: �US Energy Information Administration

;

;

;
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36	 Chapter 1    Functions and Limits

	28.	� �The table shows average US retail residential prices of 
electricity from 2000 to 2012, measured in cents per 
kilowatt hour.

	 (a)	� Make a scatter plot. Is a linear model appropriate?
	 (b)	� Find and graph the regression line.
	 (c)	� Use your linear model from part (b) to estimate the 

average retail price of electricity in 2005 and 2013.

Years since 2000 CentsykWh

0 8.24
2 8.44
4 8.95
6 10.40
8 11.26

10 11.54
12 11.58

Source: �US Energy Information Administration

	29.�	� Many physical quantities are connected by inverse square 
laws, that is, by power functions of the form f sxd − kx22.  
In particular, the illumination of an object by a light source 
is inversely proportional to the square of the distance from 
the source. Suppose that after dark you are in a room with 
just one lamp and you are trying to read a book. The light is 
too dim and so you move halfway to the lamp. How much 
brighter is the light?

	30.	� �It makes sense that the larger the area of a region, the larger 
the number of species that inhabit the region. Many ecolo-
gists have modeled the species-area relation with a power 
function and, in particular, the number of species S of bats 
living in caves in central Mexico has been related to the 
surface area A of the caves by the equation S − 0.7A0.3.

	 (a)	� The cave called Misión Imposible near Puebla, 
Mexico, has a surface area of A − 60 m2. How many 
species of bats would you expect to find in that cave?

	 (b)	� If you discover that four species of bats live in a cave, 
estimate the area of the cave.

; 	31.	� �The table shows the number N of species of reptiles and 
amphibians inhabiting Caribbean islands and the area A of 
the island in square miles.

	 (a)	� Use a power function to model N as a function of A.
	 (b)	� The Caribbean island of Dominica has area 291 mi2. 

How many species of reptiles and amphibians would 
you expect to find on Dominica?

Island A N

Saba 	 4 	 5
Monserrat 	 40 	 9
Puerto Rico 	 3,459 	 40
Jamaica 	 4,411 	 39
Hispaniola 	 29,418 	 84
Cuba  	 44,218 	 76

	32.	� �The table shows the mean (average) distances d of the 
planets from the sun (taking the unit of measurement to be 
the distance from planet Earth to the sun) and their periods 
T (time of revolution in years).

	 (a)	 Fit a power model to the data.
	 (b)	� Kepler’s Third Law of Planetary Motion states that 

“The square of the period of revolution of a planet 
is proportional to the cube of its mean distance from 
the sun.”  
Does your model corroborate Kepler’s Third Law?

Planet d T

Mercury 	 0.387 	 0.241
Venus 	 0.723 	 0.615
Earth 	 1.000 	 1.000
Mars 	 1.523 	 1.881
Jupiter 	 5.203 	 11.861
Saturn 	 9.541 	 29.457
Uranus 	 19.190 	 84.008
Neptune 	 30.086 	 164.784

;

;

In this section we start with the basic functions we discussed in Section 1.2 and obtain 
new functions by shifting, stretching, and reflecting their graphs. We also show how to 
combine pairs of functions by the standard arithmetic operations and by composition.

Transformations of Functions
By applying certain transformations to the graph of a given function we can obtain 
the graphs of related functions. This will give us the ability to sketch the graphs of  
many functions quickly by hand. It will also enable us to write equations for given graphs.

Let’s first consider translations. If c is a positive number, then the graph of y − f sxd 1 c 
is just the graph of y − f sxd shifted upward a distance of c units (because each y-coordi-
nate is increased by the same number c). Likewise, if tsxd − f sx 2 cd, where c . 0, then 
the value of t at x is the same as the value of f  at x 2 c (c units to the left of x). There- 
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