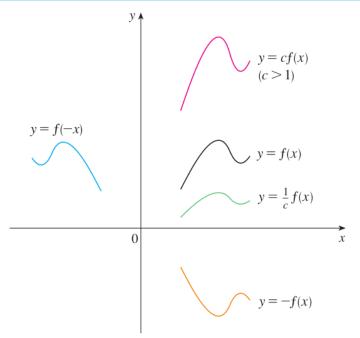
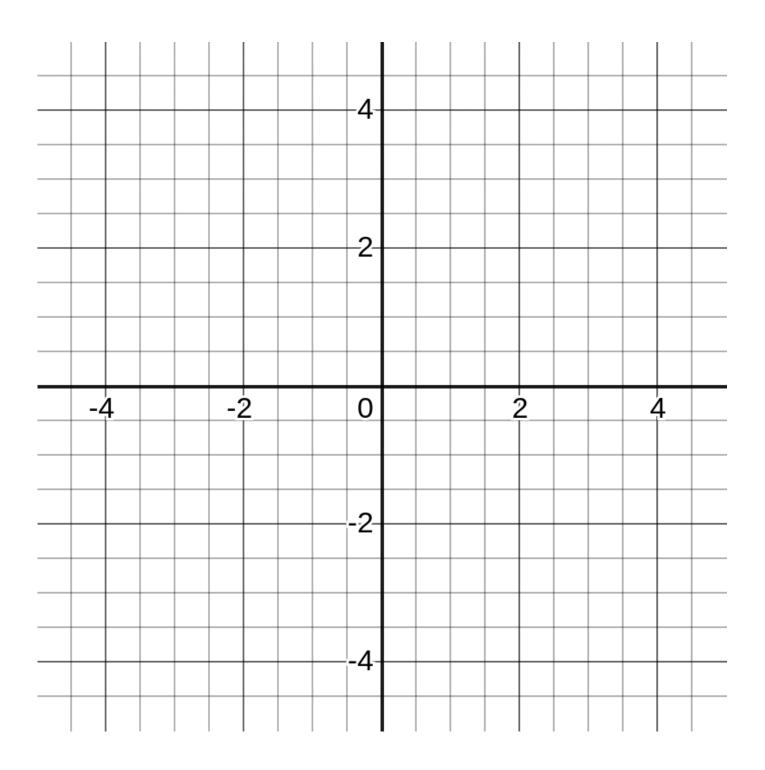

Chapter 1

Functions and Limits

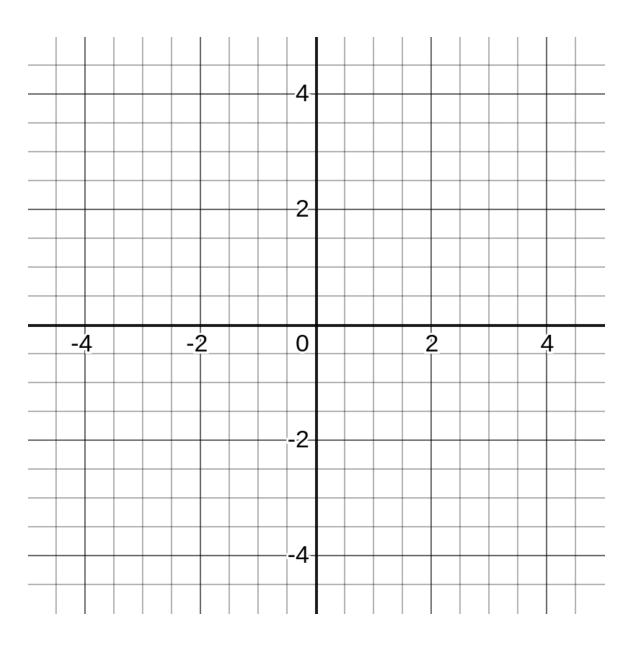
1.3 New Functions from Old Functions

Translation.


Vertical and Horizontal Shifts Suppose c > 0. To obtain the graph of y = f(x) + c, shift the graph of y = f(x) a distance *c* units upward y = f(x) - c, shift the graph of y = f(x) a distance *c* units downward y = f(x - c), shift the graph of y = f(x) a distance *c* units to the right y = f(x + c), shift the graph of y = f(x) a distance *c* units to the left


Stretching and reflecting.

Vertical and Horizontal Stretching and Reflecting Suppose c > 1. To obtain the graph of


y = cf(x), stretch the graph of y = f(x) vertically by a factor of cy = (1/c)f(x), shrink the graph of y = f(x) vertically by a factor of cy = f(cx), shrink the graph of y = f(x) horizontally by a factor of cy = f(x/c), stretch the graph of y = f(x) horizontally by a factor of cy = -f(x), reflect the graph of y = f(x) about the *x*-axis y = f(-x), reflect the graph of y = f(x) about the *y*-axis

EXAMPLE 1 Given the graph of $y = \sqrt{x}$, use transformations to graph $y = \sqrt{x} - 2$, $y = \sqrt{x - 2}$, $y = -\sqrt{x}$, $y = 2\sqrt{x}$, and $y = \sqrt{-x}$.

EXAMPLE 5 Sketch the graph of the function $y = |x^2 - 1|$.

Adding. $(f + f) = f(f) + f(f)$	Substracting. $(f - x)(x) = f(x) - x(x)$
(f+g)(x) = f(x) + g(x)	(f-g)(x) = f(x) - g(x)
Domain = $Dom(f) \cap Dom(g)$	$Domain = Dom(f) \cap Dom(g)$
Multiplying.	Dividing.
(fg)(x) = f(x)g(x)	(f/g)(x) = f(x)/g(x)
Domain = $Dom(f) \cap Dom(g)$	Domain = $every \ x \text{ in } Dom(f) \cap Dom(g)$ for which $g(x) \neq 0$.
Example. Find the domain of the function $h(x) = \sqrt{x} + \sqrt{2-x} .$	Example Find the domain of the function $h(x) = \frac{x^2}{x-1}$.

Composite of two functions (Composition).

Definition Given two functions f and g, the **composite function** $f \circ g$ (also called the **composition** of f and g) is defined by

$$(f \circ g)(x) = f(g(x))$$

Domain = $\begin{array}{c} \text{every } x \text{ in the Dom}(g) \\ \text{such that } g(x) \text{ is in Dom}(f). \end{array}$

EXAMPLE 6 If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$.

EXAMPLE 9 Given $F(x) = \cos^2(x + 9)$, find functions f, g, and h such that $F = f \circ g \circ h$.

Example. Find the domain of the function $h(x) = \sqrt{x+2}$.