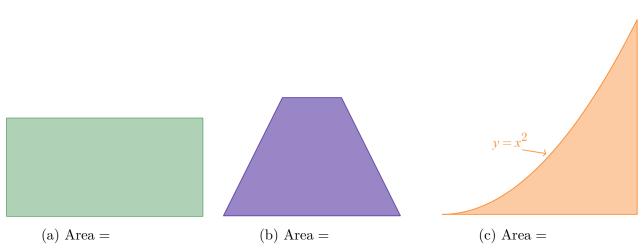
${\rm Math}~241$

Chapter 4

Section 4.1: Areas and Distances

Contents

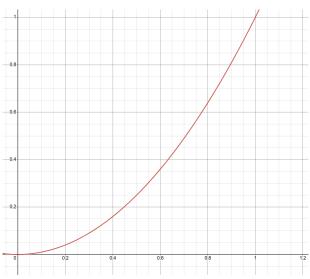
Divide and Conquer	With the l	Right 1	Endpoir	nt Rule	e! .	 						
Divide and Conquer	With the I	Left Ei	ndpoint	Rule!		 						
Sigma Notation							•					
Taking the Limit! .												



What is the area of the following shapes?

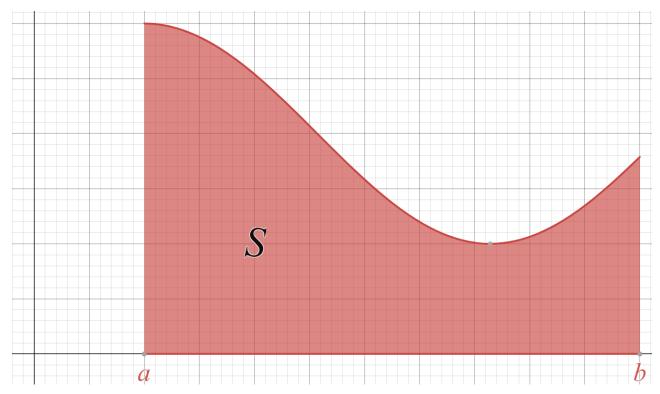
<u>Trick</u>: Use simpler shapes, such as rectangles, to approximate the area.

EXAMPLE 1. Using rectangles, approximate the area of the region S under the graph of $y = x^2$ between x = 0 and x = 1. Go to Desmos: https://www.desmos.com/calculator/gfrgqd4nvx

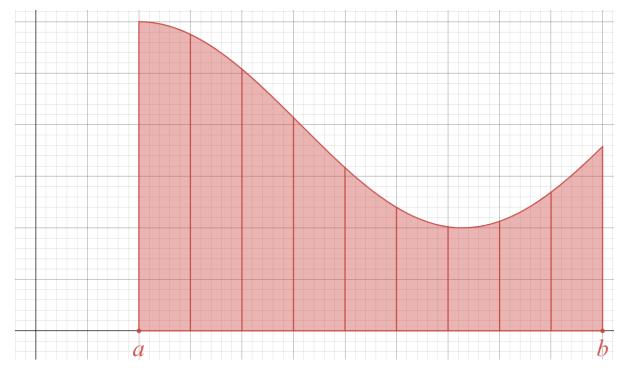


Divide and Conquer With the Right Endpoint Rule!

Suppose we want to compute the area of a region S bounded by the graph of some function y = f(x).



<u>STEP I</u> Subdivide the region S into n strips of equal width $\Delta x = (b - a)/n$.



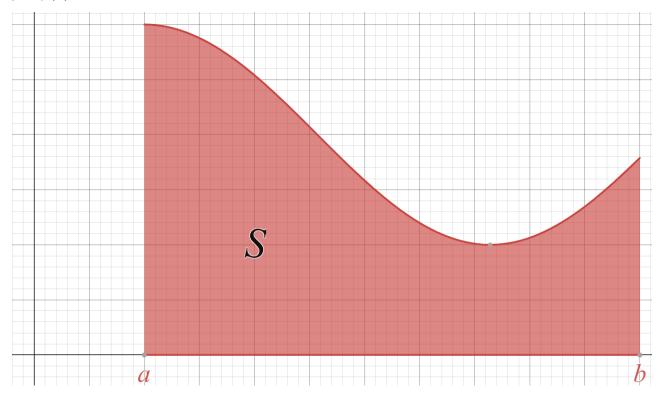
<u>STEP II</u> Choose the right-end point for all subintervals: $x_1 = a + \Delta x, x_2 = a + 2\Delta x, \dots, x_{n-1} = a + (n-1)\Delta x, x_n = b.$

<u>STEP III</u> Approximate by adding the area of each rectangle:

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x.$$

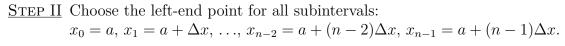
Divide and Conquer With the Left Endpoint Rule!

Suppose we want to compute the area of a region S bounded by the graph of some function y = f(x) from x = a to x = b.



<u>STEP I</u> Subdivide the region S into n strips of equal width $\Delta x = (b - a)/n$.



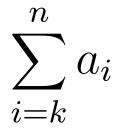


<u>STEP III</u> Approximate by adding the area of each rectangle:

$$L_n = f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x.$$

Sigma Notation

We use the symbol \sum to write a summation of numbers compactly:



EXAMPLE 2.

- **a)** Expand $\sum_{i=1}^{7} i$.
- **b)** Write $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$ with the Sigma notation.
- c) Write 1 + 3 + 5 + 7 + 9 + 11 + 13 with the Sigma notation.

<u>Useful Sum Formulas:</u>

•
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2};$$

• $\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6};$
• $\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2.$

Taking the Limit!

EXAMPLE 3. Show that the area of the region S in Example 1 is 1/3. In other words, show that

$$\operatorname{Area}(S) = \lim_{n \to \infty} R_n = 1/3.$$

<u>General definition of Area</u>: The area of the region S lying under the graph of a function y = f(x) from x = a to x = b is given by

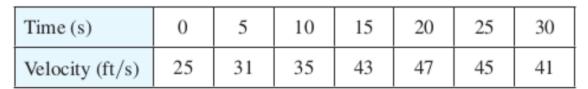
- Area(S) = $\lim_{n \to \infty} R_n = \lim_{n \to \infty} \left(f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x \right)$
- Area(S) = $\lim_{n \to \infty} L_n = \lim_{n \to \infty} \left(f(x_0) \Delta x + f(x_1) \Delta x + \dots + f(x_{n-1}) \Delta x \right)$

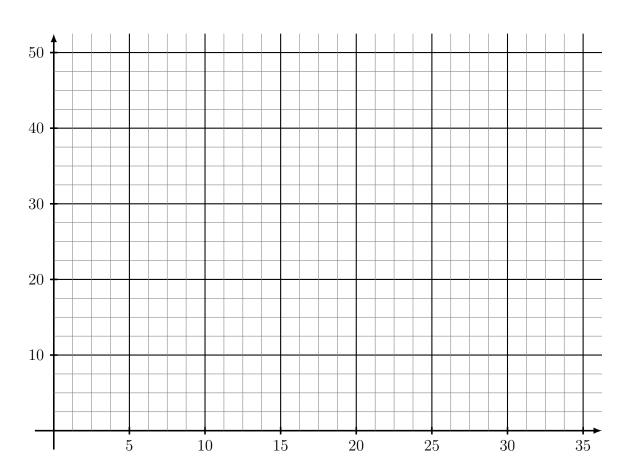
If an object move at constant velocity, then the distance between the start and finish line is easy to compute:

Distance = Velocity
$$\times \Delta Time$$
 .

What do we do if the velocity is not constant?

EXAMPLE 4. Suppose the odometer on our car is broken and we want to estimate the distance driven over a 30-second time interval. We take speedometer readings every five seconds and record them in the following table:





Remark:

• The total distance is given by the area under the curve of the velocity function!