
Chapter 4 Integrals

4.3 The Fundamental Theorem of Calculus

EXAMPLE 1 If *f* is the function whose graph is shown in Figure 2 and $g(x) = \int_0^x f(t) dt$, find the values of g(0), g(1), g(2), g(3), g(4), and g(5). Then sketch a rough graph of *g*.

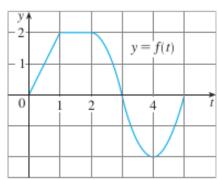
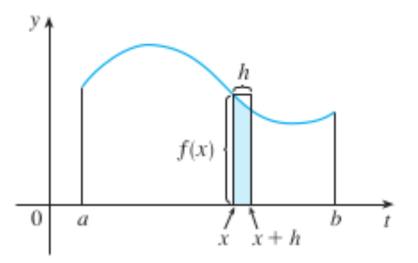



FIGURE 2

The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt$$
 $a \le x \le b$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

EXAMPLE 2 Find the derivative of the function $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

Example. Find
$$\frac{d}{dx} \Big(\int_{1}^{x^4} \sec(t) dt \Big).$$

Example. Find the derivative of the function $f(x) = \int_{\sin x}^{1} \sqrt{1+t^2} \, dt$

Second part of the Fundamental Theorem of Calculus.

Example. Compute the integral $\int_a^b x \, dx$ where a and b are two numbers such that a < b.

The Fundamental Theorem of Calculus, Part 2 If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function F such that F' = f.

Example. Evaluate the integral $\int_{-2}^{1} x^3 dx$.

Example. Find the value of the integral $\int_0 (3x^2 - \sin(\pi x) + \cos(x)) dx$.

EXAMPLE 8 What is wrong with the following calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \bigg]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$

Differentiation and Integration as Inverse Processes.

The Fundamental Theorem of Calculus Suppose *f* is continuous on [*a*, *b*]. **1.** If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).

2. $\int_{a}^{b} f(x) dx = F(b) - F(a)$, where F is any antiderivative of f, that is, F' = f.