Math 241

Chapter 5

Section 5.1: Area Between Curves

Contents

Non Intersecting Regions	2
Intersecting Regions	3
Regions Bounded By Functions of y	5

Desmos: https://www.desmos.com/calculator/o7vvfgfwzy

Given two functions f(x) and g(x) such that

$$g(x) \le f(x) \quad a \le x \le b,$$

the area of the region S enclosed by f(x), g(x), x = a and x = b is

AREA
$$(S) = \int_{a}^{b} f(x) - g(x) \, dx.$$

EXAMPLE 1. Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on the sides by x = 0 and x = 1.

EXAMPLE 2. Find the area of the region enclosed by the functions $y = x^2$ and y = x + 2.

General Steps:

- 1. Draw a picture and find the points of intersection between the two curves.
- 2. Set up the definite integral and evaluate the definite integral.

EXAMPLE 3. Find the area of the region enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

EXAMPLE 4. Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.