Chapter 5 Applications in integration

5.2 Volumes

SOLIDS OF REVOLUTION.

- Consider the region enclosed by

$$x=0$$
 , $x=1$,

$$y=0$$
 and $y=\sqrt{x}$

- Rotate the region about one of the axis: - About x-axis

App: https://c3d.libretexts.org/CalcPlot3D/index.html#Volumes

Example.

Rotate the region enclosed by y = x, y = 1, x = 0 about the *y*-axis.

Rotation about the x-axis.

- Divide into subintervals.
- Create rectangles.
- Rotate those rectangles.
- Generate small cylinders

Typical cylinder:

- Radius:
- Heigth:

Volume of typical cylinder:

$$\operatorname{Vol}(\operatorname{Solid}) = \int_{a}^{b} \pi (\operatorname{radius})^{2} dx$$

EXAMPLE 2 Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1. Illustrate the definition of volume by sketching a typical approximating cylinder.

$$Vol(Solid) = \int_{a}^{b} \pi (radius)^{2} dy$$

EXAMPLE 3 Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the y-axis.

Rotation about x-axis

$$Vol(Solid) = \int_{a}^{b} \pi (r_{out}^{2} - r_{in}^{2}) dx$$

Rotation about y-axis

$$Vol(Solid) = \int_{a}^{b} \pi (r_{out}^{2} - r_{in}^{2}) \, dy$$

EXAMPLE 4 The region \Re enclosed by the curves y = x and $y = x^2$ is rotated about the *x*-axis. Find the volume of the resulting solid.