Math 244

CHAPTER 16

Section 16.8: Stokes' Theorem

Contents

2

5

Curl in 3D

Stokes' Theorem

Created by: Pierre-Olivier Parisé Fall 2023

Curl in 3D

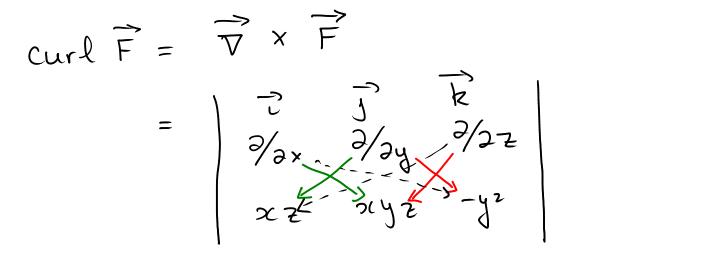
DEFINITION 1. If $\vec{F} = \langle P, Q, R \rangle$ is a vector field in 3D, then

$$\operatorname{curl} \vec{F} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle \,.$$

Another way to write $\operatorname{curl} \vec{F}$ is as followed. Define

$$\vec{\nabla} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \implies \operatorname{curl} \vec{F} = \vec{\nabla} \times \vec{F}.$$

EXAMPLE 1. Find the curl of $\vec{F} = \langle xz, xyz, -y^2 \rangle$. Solution.



 $= \left\langle \frac{2}{\partial y} \left(-y^{2} \right) - \frac{2}{\partial z} \left(xy^{2} \right), - \left(\frac{2}{\partial x} \left(-y^{2} \right) - \frac{2}{\partial z} \left(xz \right) \right), \frac{2}{\partial x} (xy^{2}) - \frac{2}{\partial y} (xz) \right\rangle$ $= \left\langle -2y - xy, x, yz \right\rangle$

THEOREM 1. Let $\vec{F} = \langle P, Q, R \rangle$. If

- P, Q, R have continuous partial derivatives.
- $\operatorname{curl} \vec{F} = \vec{0}.$

Then \vec{F} is conservative.

EXAMPLE 2. Let $\vec{F}(x, y, z) = \langle y^2 z^3, 2xyz^3, 3xy^2 z^2 \rangle$. **a)** Show that \vec{F} is conservative. **b)** Find a function f such that $\vec{F} = \vec{\nabla} f$. SOLUTION. a) $\operatorname{curl} \vec{F} = \begin{bmatrix} \vec{l} & \vec{j} & \vec{k} \\ \frac{2}{3} & \frac{2$ = $\langle bxyz^2 - bxyz^2, -3y^2z^2 + 3y^2z^2 \rangle$ 2yz3-2yz3> $=\langle 0,0,0\rangle = \overrightarrow{0}$ = = \overrightarrow{F} is conservative b) $\overrightarrow{P}f = \overrightarrow{F}$ = $(\overrightarrow{f}x = y^2 z^3)$ $fy = 2xyz^3$ $fz = 3xy^2 z^2$

MATH 244

Integrate all the equations:

$$\begin{cases}
f(x_1,y_1,z) = x_2y_1^2z_3 \\
f(x_1,y_1,z) = x_2y_2^2z_3 \\
f(x_1,y_1,z) = x_2y_2^2z_3
\end{cases}$$

Final expressia:

$$f(\gamma, \gamma, z) = \chi \gamma^2 z^3 + C$$

Recall Green's Theorem:

$$\int_C \vec{F} \cdot d\vec{r} = \iint_D Q_x - P_y \, dA,$$

where C is orientated positively. Writing $\vec{F} = \langle P, Q, 0 \rangle$:

$$Q_x - P_y = \langle 0, 0, Q_x - P_y \rangle \cdot \langle 0, 0, 1 \rangle = \operatorname{curl} \vec{F} \cdot \vec{k}$$

so that

$$\int_C \vec{F} \cdot d\vec{r} = \iint_D \vec{F} \cdot \vec{k} \, dA.$$

A particular case of Stokes' Theorem.

THEOREM 2. Assume

- S be an oriented surface bounded by a loop C with orientation induced by the surface.
- $\vec{F} = \langle P, Q, R \rangle$ with P, Q, R having continuous partial derivatives.

Then,

$$\int_C \vec{F} \cdot d\vec{r} = \iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}.$$

Rule of Thumb: What we mean by the orientation induced by the surface is: we apply the right-hand rule with the thumb pointing in the direction of the normal vector.

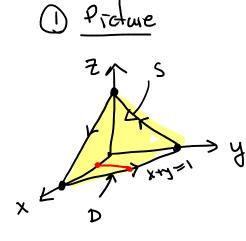
P.-O. Parisé

MATH 244

EXAMPLE 3. Let $\vec{F}(x, y, z) = \langle x + y^2, y + z^2, z + x^2 \rangle$ and *C* is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). Compute

$$\int_C \vec{F} \cdot d\vec{r}.$$

SOLUTION.



Plane as
$$S : \mathcal{I} + \mathcal{I} + \mathcal{I} = 1$$

 $\overrightarrow{\mathcal{I}}(u,v) = \langle u,v, 1 - u - v \rangle$
 $D = \{(u,v) : o \le u \le 1, 0 \le v \le 1 - z\}$

P.-O. Parisé

Then,

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{s} = \iint_{D} \langle -2(1-u-v), -2v, -2v \rangle \langle 1, 1, 1 \rangle dA$$

$$= \int_{0}^{1} \int_{0}^{1-u} -2 + 7u + 7v - 7u \, dv \, du$$

$$= \int_{0}^{1} \int_{0}^{1-u} -2 \, dv \, du$$

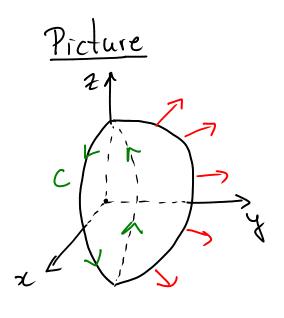
$$= -2 \int_{0}^{1} 1 - u \, du$$

$$= -2 \int_{0}^{1} 1 - u \, du$$

EXAMPLE 4. Let $\vec{F}(x, y, z) = \langle ze^y, x \cos y, xz \sin y \rangle$ and S be the hemisphere $x^2 + y^2 + z^2 = 16, y \ge 0$ oriented in the direction of the positive y-axis. Compute

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}.$$

SOLUTION.



C: circle $x^2 + z^2 = 16$ with counterclockwise orientation. $\vec{F}(t) = \langle 4\cos t, 0, 4\sin t \rangle$ with $0 \le t \le 2\pi$.

$$\frac{\text{Stokes' Theorem}}{\iint_{s} \text{ curl } \vec{F} \cdot d\vec{s}} = \int_{c} \vec{F} \cdot d\vec{r}$$
Then
$$\frac{d\vec{r} = \vec{r} \cdot t \cdot dt}{\int_{c} \vec{F} \cdot d\vec{r}} = \int_{0}^{2\pi} \langle 4\text{sint}, 4\text{cost}, 0 \rangle$$

$$\cdot \langle -4\text{sint}, 0, 4\text{cost} \rangle dt$$

MATH 244

$$= \int_{0}^{2\pi} -16 \sin^{2}t dt$$

$$= -16 \int_{0}^{2\pi} \frac{1-\cos 2t}{2} dt$$