Chapter 15 Multiple Integrals

15.6 Triple integrals

- A box $B = [a, b] \times [c, d] \times [r, s]$
- \bullet Divide [a, b] in l parts
- \bullet Divide [c, d] in m parts
- Divide [r, s] in n parts

Heat in a small box

Total heat in box

The triple integral of f over the box B is

$$\iiint_B f(x, y, z) dV = \lim_{l, m, n \to \infty} \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n f(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*) \Delta V$$

Triple integrals in cartesian coordinates

- Write explicitly $B = \{(x, y, z) : a \le x \le b, c \le y \le d, r \le z \le s\}$
- Divide [a, b] in parts of length Δx .
- Divide [c, d] in parts of length Δy .
- Divide [r, s] in parts of length Δz .

Fubini's Theorem for triple integrals

$$\iiint_B f(x, y, z) dV = \int_r^s \int_c^d \int_a^b f(x, y, z) dx dy dz$$

the function must be continuous on the box B.

EXAMPLE 1 Evaluate the triple integral $\iiint_B xyz^2 dV$, where *B* is the rectangular box given by

$$B = \{(x, y, z) \mid 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$$

QUESTION. What are the 5 other configurations of dx, dy, dz in a triple integral?

1

4

|2|

5

3

General Domains.

For E a general solid, let B be a box containing E.

Define a function F on B:

$$F(x,y,z) = \begin{cases} f(x,y,z) & \text{if } (x,y,z) \in E \\ 0 & \text{if } (x,y,z) \in B \backslash E. \end{cases}$$

Domain of type 1.

• Solid E is bounded along the z - axis by two functions.

 \bullet Define D to be the shadow of E in the xy – plane.

 \bullet The domain D can be of type I or type II.

$$\iiint_{E} f(x, y, z) dV = \iint_{D} \left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) dz \right] dA$$

EXAMPLE 2 Evaluate $\iiint_E z \ dV$, where E is the solid tetrahedron bounded by the four planes x = 0, y = 0, z = 0, and x + y + z = 1.

Domains of type 2.

- Solid E is bounded along the x axis by two functions.
- Define D to be the shadow of E in the yz plane.
- The domain D can be of type I or type II.

$$\iiint_{E} f(x, y, z) dV = \iint_{D} \left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) dx \right] dA$$

Domains of type 3.

• Solid E is bounded along the y - axis by two functions.

• Define D to be the shadow of E in the xz – plane.

• The domain D can be of type I or type II.

$$\iiint_E f(x,y,z) dV = \iint_D \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dA$$

EXAMPLE 3 Evaluate $\iiint_E \sqrt{x^2 + z^2} \ dV$, where *E* is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.

EXAMPLE 4 Express the iterated integral $\int_0^1 \int_0^{x^2} \int_0^y f(x, y, z) dz dy dx$ as a triple integral and then rewrite it as an iterated integral in a different order, integrating first with respect to x, then z, and then y.

Application: computing volumes of solids.

$$Vol(E) = \iiint_E dV$$

EXAMPLE. Use a triple integral to find the volume of the tetrahedron T bounded by the planes x+2y+z=2, x=2y, x=0, and z=0.