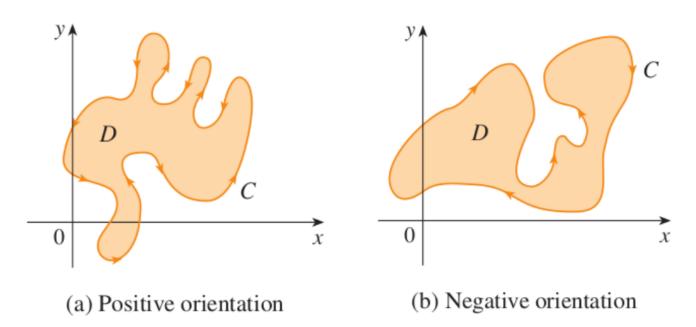
Chapter 16 Vector Calculus 16.4 Green's Theorem

Orientation of closed curves



EXAMPLE.

Give a parametrization of the positively oriented circle of radius 1 centered at the origin. Find a parametrization giving the negative orientation?

Green's Theorem.

 $C: \text{ closed path with positive orientation.} \\ D: \text{ region bounded by } C. \\ \text{ If } \vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}, \text{ with } P, Q \\ \text{ continuously differentiable, then} \\ \oint_C \vec{F} \cdot d\vec{r} = \oint_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA. \end{cases}$

Remarks:

- The symbol \oint_{α} means the path has a positive orientation.
- The left-hand side measures how \vec{F} follows the direction of C.
- The right-hand side measures the tendency of \vec{F} to rotate in the direction of C in the region enclosed by it.

EXAMPLE 1 Evaluate $\oint_C x^4 dx + xy dy$, where *C* is the triangular curve consisting of the line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0).

EXAMPLE 2 Evaluate $\oint_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$, where *C* is the circle $x^2 + y^2 = 9$.

EXAMPLE 4 Evaluate $\oint_C y^2 dx + 3xy dy$, where *C* is the boundary of the semiannular region *D* in the upper half-plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Computing Areas with Green's Theorem

Recall:
$$A(D) = \iint_D 1 \, dA$$

(1) $A(D) = \oint_C x \, dy.$

(2)
$$A(D) = -\oint_C y \, dx.$$

(3)
$$A(D) = \frac{1}{2} \left(\oint_C x \, dy - y \, dx \right).$$

EXAMPLE 3 Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.