Chapter 16 Vector Calculus

Generic surfaces in 3D.

EXAMPLE. Using Python, draw the surface described by the equation $x^2 + y^2 + z^2 = 1$.

3–6 Identify the surface with the given vector equation.

5. $\mathbf{r}(s,t) = \langle s \cos t, s \sin t, s \rangle$ where $0 \le s \le 2$, and $0 \le t \le 2\pi$.

Grid curves.

7–12 Use a computer to graph the parametric surface. Get a printout and indicate on it which grid curves have u constant and which have v constant.

7. $\mathbf{r}(u, v) = \langle u^2, v^2, u + v \rangle$, https://www.desmos.com/3d/fb472f71c5 $-1 \le u \le 1, -1 \le v \le 1$ **EXAMPLE 3** Find a vector function that represents the plane that passes through the point P_0 with position vector \mathbf{r}_0 and that contains two nonparallel vectors \mathbf{a} and \mathbf{b} .

19–26 Find a parametric representation for the surface.

23. The part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$

Tangent Planes.

- $u = u_0$ (constant). $\vec{r}(v) = \vec{r}(u_0, v)$ represents the curve C_1 . Hence, \vec{r}_v is the tangent vector to C_1 at P_0 .
- $v = v_0$ (constant). $\vec{r}(u) = \vec{r}(u, v_0)$ represents the curve C_2 . Hence, \vec{r}_u is the tangent vector to C_2 at P_0 .

Equation of the tangent plane at P_0 :

$$\vec{r}(u,v) = \langle x_0, y_0, z_0 \rangle + u\vec{r}_u(u_0, v_0) + v\vec{r}_v(u_0, v_0)$$

where $-\infty < u < \infty, -\infty < v < \infty$.

37–38 Find an equation of the tangent plane to the given parametric surface at the specified point. Graph the surface and the tangent plane. https://www.desmos.com/3d/dfc50f1356

37.
$$\mathbf{r}(u, v) = u^2 \mathbf{i} + 2u \sin v \mathbf{j} + u \cos v \mathbf{k}; \quad u = 1, v = 0$$