Math 244

Chapter 16

Section 16.9: Divergence Theorem

Contents

Divergence in 3D

Divergence Theorem

Created by: Pierre-Olivier Parisé Fall 2023 2 4

DIVERGENCE IN 3D

DEFINITION 1. If $\vec{F} = \langle P, Q, R \rangle$ is a vector field in 3D, then

div
$$\vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

Another way to write $\operatorname{curl} \vec{F}$ is as followed. Define

$$\vec{\nabla} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \implies \text{div} \vec{F} = \vec{\nabla} \cdot \vec{F}.$$

EXAMPLE 1. Find the divergence of $\vec{F} = \langle xz, xyz, -y^2 \rangle$. Solution. THEOREM 1. Let $\vec{F} = \langle P, Q, R \rangle$ and assume P, Q, R have continuous second partial derivatives. Then

$$\operatorname{div}\left(\operatorname{curl}\vec{F}\right)=0.$$

EXAMPLE 2. Show that $\vec{F}(x, y, z) = \langle xz, xyz, -y^2 \rangle$ can't be written as the curl of some other vector field.

SOLUTION.

DIVERGENCE THEOREM

THEOREM 2. Assume

- S be a closed surface with positive orientation (outward orientation).
- $\vec{F} = \langle P, Q, R \rangle$ with P, Q, R having continuous partial derivatives.

Then,

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{E} \operatorname{div} \vec{F} \, dV,$$

where E is the solid bounded by S.

EXAMPLE 3. Let $\vec{F}(x, y, z) = \langle xye^z, xy^2z^3, -ye^z \rangle$ and S is the surface of the box bounded by the coordinates planes and the planes x = 3, y = 2, and z = 1. Compute the flux of \vec{F} across S.

SOLUTION.

P.-O. Parisé