MATH-244 Fall 2023 Practice Problems Solutions
Section 15.2 Pierre-Olivier Parisé

Problem 6

We first have that
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‘ Problem 14 !

The first thing to do is to draw the region D.
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We see that the curves y = 22 and y = 3z intersects at the points (0,0) and (3, 9).

Type I We have 0 < 2 < 3 and 22 < y < 3z. So the functions bounding the values of y are x? and
3z. As a type I, the domain is written as

D={(z,y) : 0< <2 2* <y <3z}

Type IT We see that 0 < y < 9 and since x > 0, the curves bounding the values of x are x = y/3 and
r = ./y. As a a type II, the domain is written as

D={(z,y) : y/3<z<.y,0<y<9}



Now the integral is
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If you chose the other way, then your integral should look like this:
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’ Problem 30 J‘

The solid we are trying to find the volume is represented in the figure below.
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To find the domain of integration D, we have to project the surfaces % 4+ 22> = 4 and x = 2y on
the XY-place. For the first surface, we obtain y = +2 (two horizontal lines in the XY-plane)
and x = 2y (a line with slope 1/2). So the domain of integration is the following region: So, the

domain D is

D=A{(z,y) : 0<2<2y,0<y<2}



The function to integrate is z = /4 — y2. Thus, the volume of the solid S is given by

V(S):/02/()2y\/4—y2dmdy:/022y\/4—y2dy.

The integral with 2y+/4 — y? dy is done by a change of variable and we get
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Thus, the volume of the solid is

’Problem 52 J\

From the limits in the integrals, we see that 0 < x < 1 and that 2?2 < y < 1. So the region
of integration looks like this: So the region D is the region bounded by the curves z = 0, y = 22,
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and y = 1. Since x > 0, the region D is also the region bounded by the curves z = 0, * = /y,
and y = 1. So we can say that

D={(z,y) : 0<z<y,0<y<1}
Thus, the integral now becomes
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After an integration by parts, we get the value of the integral:
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