PRACTICE PROBLEMS FROM SECTION 10.3

Problem 4

a) r = 4 and $\theta = 3\pi/4$. So $x = 4\cos(3\pi/4) = 4(-\sqrt{2}/2) = -2\sqrt{2}$ and $y = 4\sin(3\pi/4) = 4(\sqrt{2}/2) = 2\sqrt{2}$.

b)
$$r = \sqrt{2}$$
 and $\theta = \pi/4$. So $x = \sqrt{2}\cos(\pi/4) = 2$ and $y = \sqrt{2}\sin(\pi/4) = 2$.

Problem 6(i)

- a) x = -4 and y = 4, so $r = \sqrt{(-4)^2 + (4)^2} = \sqrt{32} = 4\sqrt{2}$ and $\theta = \arctan(4/-4) = \arctan(-1) = -\pi/4 + k\pi$, where k is an integer. However, x < 0 and y > 0, so the point (x, y) should be in the second quadrant. Therefore, the angle is $\theta = -\pi/4 + \pi = 3\pi/4$.
- b) x = 3 and $y = 3\sqrt{3}$, so $r = \sqrt{9+9\cdot 3} = \sqrt{36} = 6$ and $\theta = \arctan(\frac{1}{\sqrt{3}}) = \pi/6 + k\pi$, where k is an integer. However, x > 0 and y > 0, so the point (x, y) should be in the second quadrant. Therefore, the angle is $\theta = \pi/6$.

Problem 16

We have $\sec \theta = 1/\cos \theta = 1/(x/r) = r/x$ because $\cos \theta = x/r$. Therefore, the polar equation becomes $\sqrt{x^2 + y^2} = \frac{4\sqrt{x^2 + y^2}}{x}$. Dividing by $\sqrt{x^2 + y^2}$, we get

$$1 = \frac{4}{x}.$$

which means x = 4. This is a vertical line.

Problem 17

We have $r = \sqrt{x^2 + y^2}$ and $\cos \theta = \frac{x}{r}$, so that

$$r = 5\frac{x}{r} \quad \Rightarrow \quad r^2 = 5x \quad \Rightarrow \quad x^2 + y^2 = 5x.$$

After simplifications, we get $(x-5)^2 + y^2 = 25$ and this is a circle of radius 5 and centered at the point (5,0).

PRACTICE PROBLEMS FROM SECTION 15.3

Problem 12

Let $x = r \cos \theta$ and $y = r \sin \theta$ (we change from cartesian to polar coordinates). The equation

of the circle of radius 2 centered at the origin is simply r = 2. Also, in polar coordinates, we have $dA = rdrd\theta$ and so

$$\iint_D \cos\sqrt{x^2 + y^2} \, dA = \int_0^{2\pi} \int_0^2 (\cos r) r \, dr d\theta = \left(\int_0^{2\pi} d\theta\right) \left(\int_0^2 r \cos r \, dr\right).$$

After an integration by parts, the value of the integral is

$$\iint_D \cos\sqrt{x^2 + y^2} \, dA = 2\pi(-1 + 2\sin(2) + \cos(2)).$$

Problem 16

We draw the region between the two cardioids. Here are the two regions (in green) enclosed within the two cardiods: The two cardiods meet when $1 + \cos \theta = 1 - \cos \theta$. After rearranging, we

have to solve the equation $2\cos\theta = 0$. This occurs only when θ is $\pi/2 + k\pi$. We choose the values $\theta = \pi/2$ and $\theta = -\pi/2$. So, the polar coordinates of the two points of intersection are

$$(1, \pi/2)$$
 and $(1, -\pi/2)$

which corresponds to the following points in the cartesian plane:

$$(0,1)$$
 and $(0,-1)$.

We have now to setup the integral. Let D denote the region enclosed by the two cardioids. The area is given by

$$A(D) = \iint_D \, dA.$$

In polar coordinates, we have $dA = rdrd\theta$. Due to the symmetry of the domain, we can only compute the area of the petal with a positive (or zero) y coordinate (above the x-axis) and then multiply our result by 2. Call this region D_1 .

The argument θ will vary from 0 to π . However, we have to split the interval $[0, \pi]$ into the intervals $[0, \pi/2]$ and $[\pi/2, \pi]$ because the cardioids intersect at $\theta = \pi/2$. We can apply again the symmetry argument because the region D_1 is symmetric with respect to the y axis and multiply by 2 to get the area of D_1 . Denote half of the petal by D_2 . So we have

$$A(D_2) = \int_0^{\pi/2} \int_0^{1-\cos(\theta)} r \, dr d\theta = \int_0^{\pi/2} \frac{(1-\cos\theta)^2}{2} \, d\theta = \frac{3\pi}{8} - 1.$$

Thus,

$$A(D) = 2A(D_1) = 4A(D_2) = \frac{3\pi}{2} - 4$$

Problem 22

The surfaces that bounds the z-coordinate are $z = \sqrt{16 - x^2 - y^2}$ and $z = -\sqrt{16 - x^2 - y^2}$. We want the solid outside the cylinder $x^2 + y^2 = 2^2$. Let D be the domain of integration, then the volume of the solid is given by

$$V(S) = \iint_D \sqrt{16 - x^2 - y^2} - \left(-\sqrt{16 - x^2 - y^2}\right) dA = \iint_D 2\sqrt{16 - x^2 - y^2} \, dA$$

To find D, we will project on the XY-plane. The projections of the cylinder on the XY-plane is a circle of radius 2 and the projection of the sphere on the XY-plane is a circle of radius 4. Thus we want the region between these two circles. We will change in polar coordinates. The equation

of the two circles are r = 2 and r = 4 and the angle ranges from 0 to 2π . So, in polar coordinates, we have

$$D = \{ (r, \theta) : 2 \le r \le 4 \text{ and } 0 \le \theta \le 2\pi \}.$$

Thus, using the change of variable formula, we get

$$V(S) = 2 \int_0^{2\pi} \int_2^4 (\sqrt{16 - r^2}) r \, dr d\theta = 4\pi \int_2^4 r \sqrt{16 - r^2} \, dr.$$

Setting $u = 16 - r^2$ and completing the calculations for the integral, we get the value

$$V(S) = 32\pi\sqrt{3}.$$

Problem 32

The bounds in the integrals give us

$$D = \{(x, y) : 0 \le x \le 2 \text{ and } 0 \le y \le \sqrt{2x - x^2}\}$$

So, the upper bound of y is half of a circle of radius 1 and center (1,0) because

$$y = \sqrt{2x - x^2} \iff (x - 1)^2 + y^2 = 1.$$

So the region looks like this

Let's describe the domain D in polar coordinates. Let $x = r \cos \theta$ and $y = r \sin \theta$. The equation of the circle in polar coordinate is $r = 2 \cos \theta$ (replace x and y by $r \cos \theta$ and $r \sin \theta$ in the equation $x^2 + y^2 = 2x$). Also, the angle θ will vary from 0 to $\pi/2$ so we cover the upper half of the circle (and its interior). So

$$D = \{ (r, \theta) : 0 \le r \le 2\cos\theta \text{ and } 0 \le \theta \le \pi/2 \}.$$

We can now compute the integral, call it I, in polar coordinates:

$$I = \int_0^{\pi/2} \int_0^{2\cos\theta} r^2 \, dr d\theta = \frac{8}{3} \int_0^{\pi/2} \cos^3\theta \, d\theta = \frac{2}{3} \int_0^{\pi/2} 3\cos(\theta) + \cos(3\theta) \, d\theta.$$

After finding the value of the integral, we get I = 16/9.