
MATH-244 Fall 2023 Practice Problems Solutions
Section 15.6 Pierre-Olivier Parisé

Problem 4

We have ∫ 1

0

∫ 2y

y

∫ x+y

0
6xy dzdxdy =

∫ 1

0

∫ 2y

y
6xy(x + y) dxdy

=
∫ 1

0

∫ 2y

y
6x2y + 6xy2 dxdy

=
∫ 1

0
(2x3y + 3x2y2)

∣∣∣x=2y

x=y
dy

=
∫ 1

0
(16y4 + 12y4) − (2y4 + 3y4) dy

=
∫ 1

0
23y4 dy

= 23
5 .

Problem 12

The solid is described in the following way

E = {(x, y, z) : 0 ≤ x ≤ π, 0 ≤ y ≤ π − x, 0 ≤ z ≤ x}.

So, ∫∫∫
E

sin y dV =
∫ π

0

∫ π−x

0

∫ x

0
sin y dzdydx =

∫ π

0
x (− cos y)|y=π−x

y=0 dx

=
∫ π

0
−x(1 + cos(π − x)) dx.

After an integration by parts, we get∫∫∫
E

sin y dV = −2 − π2/2 ≈ −6.9348.

Problem 20

So we have x2 + z2 ≤ y ≤ 8 − x2 − z2. We have to intersect the two surfaces to find the do-
main of integration in the XZ-plane. Equating both equations for the surfaces to y, we get

x2 + z2 = 8 − x2 − z2 ⇐⇒ x2 + z2 = 4.
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So the domain is a circle of radius 2. Thus, the volume will be given by

V =
∫∫∫

E
dV =

∫ 2π

0

∫ 2

0

∫ 8−r2

r2
dyrdrdθ

where we describe the domain in the XZ-plane in polar coordinates. So

V = 2π
∫ 2

0
(8 − 2r2)r dr = 2π

∫ 4

0
u du = 16π.

Problem 34

We have

E = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x2}.

The orders we would like are dzdydx, dydxdz, dxdydz, dzdxdy, dxdzdy.

1. dzdydx. Since the bounds depend only on x, we can interchange without problems:
∫ 1

0

∫ 1−x

0

∫ 1−x2

0
f(x, y, z) dzdydx.

2. dydxdz. We have to look into the XZ-plane and interchange. The region in this plane are
bounded by the curves x = 0, x = 1, z = 0 and z = 1 − x2 and looks like this: So, by seeing

this region as a type two, we get 0 ≤ x ≤
√

1 − z and 0 ≤ z ≤ 1. We then obtain
∫ 1

0

∫ √
1−z

0

∫ 1−x

0
f(x, y, z) dydxdz.
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3. dxdydz. We have to look into the XY -plane. We see that 0 ≤ x ≤
√

1 − z and 0 ≤ y ≤ 1−x.
Here, z is considered as a number which is fixed. If we see this domain as a type II (to
interchange the x and the y), we have to deal with two pieces:

• 0 ≤ y ≤ 1 −
√

1 − z, then 0 ≤ x ≤
√

1 − z.

• 1 −
√

1 − z ≤ y ≤ 1, then 0 ≤ x ≤ 1 − y.

So the integral becomes
∫ 1

0

( ∫ 1−
√

1−z

0

∫ √
1−z

0
f(x, y, z) dxdy +

∫ 1

1−
√

1−z

∫ 1−y

0
f(x, y, z) dxdy

)
dz.

4. dzdxdy. We look in the XY -plane in the original configuration. From the bounds in the
integrals in x and y, the region in the XY -plane is bounded by the curves x = 0, x = 1,
y = 0 and y = 1 − x. So we interchange easily and get 0 ≤ x ≤ 1 − y and 0 ≤ y ≤ 1 to get

∫ 1

0

∫ 1−y

0

∫ 1−x2

0
f(x, y, z) dzdxdy.

5. dxdzdy. We look at the bounds in x and z. We see these bounds give a region bounded by
x = 0, x = 1 − y, z = 0, and z = 1 − x2. Again, we have to split into two cases:

• 0 ≤ z ≤ 1 − (1 − y)2, 0 ≤ x ≤ 1 − y;

• 1 − (1 − y)2 ≤ z ≤ 1, 0 ≤ x ≤
√

1 − z.

So the integral in this final order looks like
∫ 1

0

( ∫ 1−(1−y)2

0

∫ 1−y

0
f(x, y, z) dxdz +

∫ 1

1−(1−y)2

∫ √
1−z

0
f(x, y, z) dxdz

)
dy.
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