Problem 4

We have $P(x, y) = y^2 - 2x$ and Q(x, y) = 2xy. Then, we see that

$$P_y = 2y$$
 and $Q_x = 2y$.

So $P_y = Q_x$ and the vector field \vec{F} is conservative.

So, there is a function f such that $\vec{F} = \vec{\nabla}f = f_x\vec{i} + f_y\vec{j}$. We must have

$$f_x = y^2 - 2x \quad \text{and} \quad f_y = 2xy.$$

Integrating with respect to x, we find out that $f(x, y) = y^2 x - x^2 + g(y)$. Then, differentiating with respect to y, we find $f_y(x, y) = 2xy + g'(y) = 2xy$ and so g'(y) = 0. This implies that g(y) = C for a constant C. Thus,

$$f(x,y) = xy^2 - x^2 + C.$$

Problem 20

If $\vec{r}(t) = (x(t), y(t))$, with $a \le t \le b$ is a parametrization of the path C, then the line integral can be expressed as

$$\int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt.$$

where $\vec{F}(x,y) = \langle \sin y, x \cos y - \sin y \rangle$.

Now, it is sufficient to show that \vec{F} is conservative. We have $P(x,y) = \sin y$ and $Q(x,y) = x \cos y - \sin y$, so

$$P_y = \cos y$$
 and $Q_x = \cos y$.

We see that $P_y = Q_x$ and so \vec{F} is conservative.

We now need to find a potential function f. By repeating the procedure from the previous exercise, we obtain

$$f(x,y) = x\sin y + \cos(y)$$

So by the fundamental Theorem for line integrals, we get

$$\int_C \sin y \, dx + (x \cos y - \sin y) \, dy = f(1,\pi) - f(2,0) = -1 + 1 = 0.$$