
MATH-244 Fall 2023 Practice Problems Solutions
Section 16.6 Pierre-Olivier Parisé

Problem 10

(a) By definition, div F⃗ = Px + Qy + Rz = Px + Qy because R is independent of z.

If we look only at the x components of F⃗ , that is P , we observe that when y varies, there
is no change in P (the first coordinate of the vectors in F⃗ ), but when x varies, there is a
change in P . This change is positive because when x increases, the values of P increasin,
this means that Px > 0.

If we look only at the y-components of the vectors in F⃗ , that is Q, we observe that when
x varies, there is no change in Q (the second coordinate of the vectors in F⃗ ), but when y
varies, there is a change in Q. This change is positive because when y increases, the values
of Q increase, this means that Qy > 0.

Thus, overall, we have Px + Qy > 0, meaning that divF⃗ > 0.

(b) The fact that F⃗ doesn’t depend on z implies that curlF⃗ = ⟨0, 0, Qx − Py⟩. Thus, depending
on the sign of Qx − Py, the vector curlF⃗ is orthogonal to the XY -plane and points in the
direction of the positive z-axis if Qx − Py > 0 and in the direction of the negative z-axis if
Qx − Py < 0.

Problem 2 (only Q)

We have to check if there are u, v such that r⃗(u, v) = ⟨2, 3, 3⟩.

For the point Q, this means we have to solve the three following equations:

1 + u − v = 2, u + v2 = 3, u2 − v2 = 3.

Adding the second equation to the third equation, we obtain

u2 + u = 6 ⇒ u2 + u − 6 = 0 ⇒ (u + 3)(u − 2) = 0.

The solutions are u = −3 and u = 2. we just need one value, say u = 2. From the first equation,
we see that u = v and so v = 3. We just found (u, v) such that r⃗(u, v) = ⟨1, 2, 1⟩ which mean that
the point P lies on the surface.

Problem 12

Using either the software on the web, or the python script that I provided, you obtain the following
images.
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(a) Graph of the surface (b) Latitudes when u is constant

(c) Longitudes when v is constant (d) Grid on the surface

This surface is really funny, it looks like a pillow, a really confortable pillow! :)

Problem 20

The parametric equation is

r⃗(u, v) = ⟨0, −1, 5⟩ + u ⟨2, 1, 4⟩ + ⟨−3, 2, 5⟩ = ⟨2u − 3v, −1 + u + 2v, 5 + 4u + 5v⟩ .

Problem 26

The point (0, 0, 3) lies in the plane. The intersection of a plane and a cylinder is a circle in
3D. So the region will be the interior of a circle (but the circle is not parallel to one of the three
planes).
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An efficient way of solving this problem is to find two orthogonal vector a⃗ and b⃗ parallel to the
plane such that they belong to the cylinder and then take a linear combinaison ⟨0, 0, 3⟩ + ua⃗ + v⃗b
where u2 + v2 ≤ 1.

A vector parallel to the plane z = x + 3 is a vector a⃗ = ⟨a1, a2, a3⟩ which is orthogonal to the
normal vector of the plane. The normal vector of the plane is n⃗ = ⟨−1, 0, 1⟩. We would also like
the tip of the vector a⃗ belongs to the cylinder, so we also require that a2

1 + a2
2 = 1. We have to

solve

a⃗ · n⃗ = 0
a2

1 + a2
2 = 1.

This system is explicitly:

−a1 + a3 = 0
a2

1 + a2
2 = 1.

Since a2 is free, we may put a2 = 0 and so a1 = ±1. We keep a1 = 1 and from the first equation,
we get a3 = 1. Our vector is then a⃗ = ⟨1, 0, 1⟩.

We have to find a vector b⃗ = ⟨b1, b2, b3⟩ perpendicular to a⃗ and lying on the cylinder. These
conditions give the following system of equations:

b⃗ · a⃗ = 0
b2

1 + b2
2 = 1.

Explicitly, it gives the following system of equations:

b1 + b3 = 0
b2

1 + b2
2 = 1.

A solution to this system is b1 = b3 = 0 and b2 = 1. So, we obtain b⃗ = ⟨0, 1, 0⟩.

Now, we can combine the vectors a⃗ and b⃗ with the vector ⟨0, 0, 3⟩ (the points on the plane), to
obtain

r⃗(u, v) = ⟨0, 0, 3⟩ + ua⃗ + v⃗b.

Since u2 + v2 ≤ 1, we can use polar coordinates u = ρ cos θ and v = ρ sin θ with 0 ≤ ρ ≤ 1 and
0 ≤ θ ≤ 2π. Thus, we get, after collecting all the terms together, the following parametrization of
the surface:

r⃗(u, v) = ⟨ρ cos θ, ρ sin θ, 3 + ρ cos θ⟩ .

There is another solution, which is even simpler. We want the portion of the plane inside the
cylinder x2 + y2 = 1. This means that we want the region x2 + y2 ≤ 1. We can parametrized this
region in polar coordinates by setting x = ρ cos θ and y = ρ sin θ with 0 ≤ ρ ≤ 1 and 0 ≤ θ ≤ 2π.
We can then replace the value of x inside the expression of z to get z = 3 + ρ cos θ. We then get

r⃗(ρ, θ) = ⟨ρ cos θ, ρ sin θ, 3 + ρ cos θ⟩ .
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Figure 2: Surface obtained from the parametrization
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Problem 38

We have r⃗u = ⟨−2u, 0, −1⟩ and r⃗v = ⟨−2v, −1, 0⟩.

We have to find the point (u0, v0) such that r⃗(u0, v0) = (−1, −1, −1). Analyzing the second and
third components, we see that v = 1 and u = 1. Thus, the tangent vectors at (−1, −1, −1) are

r⃗u(1, 1) = ⟨−2, 0, −1⟩ and r⃗v(1, 1) = ⟨−2, −1, 0⟩ .

Thus, the parametric equation of the tangent plane is

r⃗Π(u, v) = ⟨−1, −1, −1⟩ + ur⃗u(1, 1) + vr⃗v(1, 1) = ⟨−1 − 2u − 2v, −1 − v, −1 − u⟩

where Π is the name of the plane (the symbol Π is the capital p in greek).

Using python, we obtain the following picture of the tangent plane and the surface.

Figure 3: Graph of the surface and its tangent vector
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