L.1 Mathematical Statements

PROBLEM 1. Are the following sentences statements? If it is, say if it is true or false. If it is not, explain briefly why.

- a) |-12| = -12.
- b) x < 0.
- c) Is that an odd integer?
- d) If a = 2 and b = 4, then a + b = 6.

L.2 Logic and Mathematical Language

PROBLEM 2. Give the converse and the contrapositive of the following conditional statements.

- a) If it is Saturday, then Angela sleeps in.
- b) If it rains outside, then I will use my umbrella.
- c) If I went surfing, then the surf was bigger than 4 feet high.

PROBLEM 3. Write useful negations of the following statements in English. You can use symbols to simplify the statement.

- a) It is raining and Charlie is cold.
- b) If it is raining, then Charlie is cold.
- c) For every real number x, there exists a real number y such that x + y = 0.
- d) |a| > 0 if and only if $a \neq 0$.

Problem 4.

- a) By constructing the truth table of $P \Rightarrow Q$ and $Q \Rightarrow P$, show when a conditional statement and its converse do not have the same truth values.
- b) By constructing the truth table of $P \Rightarrow Q$ and $(\neg Q) \Rightarrow (\neg P)$, show a conditional statement and its contrapositive always have the same truth values.

L.3 Methods of Proof

PROBLEM 5. Suppose that *a* and *b* are integers. Prove each of the following.

- a) If a and b are both odd, then a + b is even.
- b) If a is even and b is odd, then a + b is odd.

PROBLEM 6. A rational number is a number q that can be put in the form of a fraction, that is there exist two integers n and m such that q = n/m. Show that $\sqrt{2}$ is not rational.

PROBLEM 7. Prove that there exist integers m and n such that 2m + 3n = 12.

PROBLEM 8. A sequence (x_n) is a ordered list $(x_1, x_2, x_3, ...)$ of real numbers. We say that a sequence (x_n) converges to a real number a if $\forall \varepsilon > 0$, $\exists N \ge 0$ such that $\forall n \ge N$, $|x_n - a| < \varepsilon$.

- a) Show that the sequence (x_n) defined by $x_n = \frac{1}{n^2}$ converges to 0.
- b) Show that the sequence (x_n) defined by $x_n = \frac{n+1}{n}$ converges to 1.