L.1 Mathematical Statements

Problem 1.

- a) Yes it is a statement. The statement is false since |-12| = 12 (absolute value turns negative numbers into positive numbers).
- b) No, this is not a statement. The value of x is not specify, so there is no truth value that can be associated to this sentence.
- c) No, this is not a statement. A question is not a statement.
- d) Yes, this is a statement. It is true, because assuming that a = 2 and b = 4, we have a + b = 2 + 4 = 6.

L.2 Logic and Mathematical Language

Problem 2.

- a) **Converse:** If Angela sleeps in, then it is a Saturday. **Contrapositive:** If Angela does not sleep in, then it is not Saturday.
- b) **Converse:** If I use my umbrella, then it rains outside. **Contrapositive:** If I don't use my umbrella, then it does not rain outside.

Problem 3.

- a) The negation is "It is not the case that it is raining and Charlie is cold.". The negation of a statement $P \wedge Q$, is $(\neg P) \lor (\neg Q)$. So, letting P: "It is raining" and Q: "Charlie is cold", a useful reformulation of the negation is "it is not raining or Charlie is not cold".
- b) The negation is "It is not the case that if is raining, then Charlie is cold". The negation of a statement $P \Rightarrow Q$ is $P \land (\neg Q)$. So, a useful reformulation of the negation is "It is raining and Charlie is not cold".
- c) Let's simplify the statement using mathematical symbols. We can equivalently and compactly rewrite the statement as " $\forall x \text{ real}, \exists y \text{ real}$ such that x + y = 0". The negation is then "It is not the case that $\forall x \text{ real}, \exists y \text{ real}$ such that x + y = 0". The negation of a universal statement " $\forall x, P(x)$ " is " $\exists x, \neg P(x)$ ". Let P(x): " $\exists y \text{ real}$ such that x + y = 0". Then we can rewrite the negation of the statement as " $\exists x \text{ real}$ such that $\neg P(x)$ " or

 $\exists x \text{ real such that it is not the case that there exists } y \text{ real such that } x + y = 0.$

The negation of an existential " $\exists y, Q(y)$ " is " $\forall y, \neg Q(y)$. For a fixed x, let Q(y): "x + y = 0". Then we can rewrite the negation of " $\exists y$ real such that x + y = 0" as " $\forall x$ real, $\neg Q(y)$ ", or " $\forall x$ real, $x + y \neq 0$ ". Therefore, the negation of the whole statement is

 $\exists x \text{ real such that } \forall y \text{ real}, x + y \neq 0$.

Problem 4.

- a) By constructing the truth table of $P \Rightarrow Q$ and $Q \Rightarrow P$, show when a conditional statement and its converse do not have the same truth values.
- b) By constructing the truth table of $P \Rightarrow Q$ and $(\neg Q) \Rightarrow (\neg P)$, show a conditional statement and its contrapositive always have the same truth values.
- a) Here the truth table of $P \Rightarrow Q$ and $Q \Rightarrow P$ combined.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
T	T	T	T
T	F	F	T
F	T	Т	F
F	F	Т	Т

We see the truth value differs in the second and first rows.

b) Here the truth table of $P \Rightarrow Q$ and $\neg Q \Rightarrow \neg P$ combined.

P	$\neg P$	Q	$\neg Q$	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$
Т	F	T	F	Т	T
Т	F	F	Т	F	F
F	Т	T	F	Т	Т
F	Т	F	Т	Т	Т

We see that the truth value in every rows are the same.

L.3 Methods of Proof

Problem 5.

a) Assume that a and b are odd integers. By definition, we have a = 2k + 1 and b = 2l + 1, where k and l are integers. Therefore

$$a + b = 2k + 1 + 2l + 1 = 2(k + l + 1).$$

The last equation expresses a + b as a multiple of 2, so a + b is even.

b) Assume that a is even and that b is odd. By the definitions, we have a = 2k and b = 2l + 1, for some integers k and l. Therefore

$$a + b = 2k + 2l + 1 = 2(k + l) + 1.$$

The last equation shows that a + b is an odd number.

PROBLEM 6. We will prove this by contradiction. Assume that $\sqrt{2}$ is a rational number, meaning there are two integers p and q such that $\sqrt{2} = p/q$. We may simplify the fraction p/q so that p and q have no common divisors.

Multiplying by q and squaring both sides of the equation $\sqrt{2} = p/q$ take us to the following equation

$$2q^2 = p^2$$

This means p^2 is even, so that p is even.

Write p = 2k, for some integer k. Replacing the new expression of p is the last equation and after simplify, we obtain

$$q^2 = 2k^2.$$

Therefore, q^2 is even, so that q is even. But if p and q are even, they share a common divisor, that is 2. But we assumed that p and q have no common divisors and this is a contradiction.

PROBLEM 7. Set m = 3 and n = 2, so that (2)(3) + (3)(2) = 6 + 6 = 12.

PROBLEM 8. A sequence (x_n) is a ordered list $(x_1, x_2, x_3, ...)$ of real numbers. We say that a sequence (x_n) converges to a real number a if $\forall \varepsilon > 0$, $\exists N \ge 0$ such that $\forall n \ge N$, $|x_n - a| < \varepsilon$.

a) Let $\varepsilon > 0$ be arbitrary. For a fix integer $n \ge 1$, we have

$$\frac{1}{n^2} \leq \frac{1}{n}$$

We have $\frac{1}{n} < \varepsilon$. This is satisfied as long as $n > \frac{1}{\varepsilon}$. Let n_0 be the biggest positive integer less than or equal to $\frac{1}{\varepsilon}$ and define $N = n_0 + 1$.

Let n be an integer such that $n \ge N$. Then, $N > \frac{1}{\varepsilon}$ and therefore $n > \frac{1}{\varepsilon}$. Since $n^2 \ge n$, we obtain that $n^2 > \frac{1}{\varepsilon}$. Thus, $\frac{1}{n^2} < \varepsilon$.

We therefore just showed that for any ε , there exists a positive integer N such that if $n \ge N$, then $\frac{1}{n^2} < \varepsilon$. Hence, (x_n) converges to 0.

b) Just notice that $|\sin(n)/n| \leq \frac{1}{n}$ and the sequence (1/n) converges to 0.