
Appendix L: Mathematical Language

L.1 Mathematical Statements

A statement is a sentence (written in words, mathematical symbols, or a combination of the
two) that is either true or false.1

Example 1.

a) 4 + 11 = 15.
This is a statement and it is true.

b) x > 5.
This is not a statement. Grammatically, it is a complete sentence, written in mathematical
symbols, with a subject (x) and a predicate (is greater than 10). The sentence, however,
is neither true or false because the value of x is not specified.

c) If x = 5, then x > 0.
This is a statement and it is true.

d) There exists a positive integer n such that n > 2.
This is a statement and it is false.

e) Is the number 20 an even number?
This is not a statement. A question is neither true or false.

A proof is a piece of writing that demonstrates that a particular statement is true. A statement
that we prove to be true is often called a theorem. A statement that we assume without proof
is an axiom. A definition is an agreement between the writer (or professor) and the reader (or
the student) as to the meaning of a word or phrase. A definition needs no proof.

L.2 Logic and Mathematical Language

In the section on set theory, you will have the chance to practice the methods of proof presented
below.

Negation

If P is a statement, then it has a truth value: true or false. The negation of a statement P
is defined as it is not the case that P . The negation of a statement P will be abbreviated by
not P or ¬P .

Example 2. Consider the statement P : “2 is an even integer”. The negation of P is “It is
not the case that 2 is an even integer” which we may rewrite as “2 is not an even integer”. We
may even go further and rewrite ¬P as follows: “2 is an odd integer”. Notice that P is true
and ¬P is false.

Conjunction and Disjunction

Let’s consider two statements P and Q.
1Most of the material presented here is from the really good notes retrieved online at https://sites.math.

washington.edu/˜conroy/m300-general/ConroyTaggartIMR.pdf. Some passages might entirely be copied or
modified slightly from this resource.
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• The conjunction of P and Q is the statement “P and Q”. It is denoted by P ∧ Q and it
is true only when P and Q are true; otherwise it is false.

• The disjunction of P and Q is the statement “P or Q”. It is denoted by P ∨ Q and it is
true when one of the two statements is true.

We can use a truth table to illustrate the conjunction and disjunction of two statements P and
Q as shown below.

P Q P ∧ Q
T T T
T F F
F T F
F F F

(a) Truth table for P ∧ Q

P Q P ∨ Q
T T T
T F T
F T T
F F F

(b) Truth table for P ∨ Q

Example 3.

a) Consider the statement P : “2 is a positive integer” and the statement Q: “−4 is a negative
integer”. The statement P ∧ Q is true because P and Q are true. But P ∧ (¬Q) is not
true because ¬Q: “−4 is not a negative integer” is false.

b) Consider the same statements from part a). The statement P ∨ Q is true because the
integer 2 is a positive integer and only one of the statements P , Q needs to be true.
The statement (¬P ) ∨ Q is also true because the statement Q is true (−4 is a negative
number). But the statement (¬P ) ∨ (¬Q) is not true because ¬P and ¬Q are both false.

We can take the negation of a conjunction and of a disjunction.

Example 4. A friend tells you the conditions to come to his party. He tells you that you
must wear green clothes only AND bring a one-page explanation of why you are at his party.
A person that wants to go to your friend’s party must satisfies both conditions. Anyone who
is wearing a non-green piece of clothe will not be allowed at the party. Also, anyone who did
not write the one-page essay will not be allowed at the party. Therefore, anyone who does not
wear a green outfit or anyone who did not write the one-page essay will not come to the party.

Conclusion: The negation of P ∧ Q is (¬P ) ∨ (¬Q).

Example 5. Your friend decides to be more welcoming. He tells you the conditions to come
to his party remains the same, but only one of them must be meet. In other words, you may
wear green clothes only OR bring a one-page explanation of why you are at his party. A person
that wants to go to your friend’s party must satisfy one of the two conditions. But if the person
is not dressed in green clothes and does not bring the one-page essay, then unfortunately, that
person will not be allowed to join the party. In other words, if both conditions are not respected
by a person, then that person will not be allowed to join the party.

Conclusion: The negation of P ∨ Q is (¬P ) ∧ (¬Q).

Conditional

A lot of statements we will encounter are of the form “If P , then Q”. These statements are called
conditional statements. We will use the following notation “P ⇒ Q” to denote a conditional
statement.

The truth value of the statement P ⇒ Q depends on the truth values of P and Q.

P.-O. Parisé MATH 444 Page 2



Example 6. We think of P ⇒ Q as an agreement. Joe makes a deal with his parents. Let
P : “Joe did the dishes after dinner” and Q: “Joe got $5”. The agreement is

P ⇒ Q : If Joe did the dishes, then he got $5.

Joe is not required to do the dishes (it is a compulsory act for his love for his family, but also
for his love for money). In the case that Joe did the dishes (P is true) and got paid (Q is true),
the agreement is met (P ⇒ Q is true). In the case that Joe didn’t do the dishes (P is false) and
didn’t get paid (Q is false), the agreement is met (P ⇒ Q is true). Since Joe is not required
to wash the dishes, his parents may choose to give him $5 for some other reason. That is, in
the case Joe did not do the dishes (P is false) and got $5 anyway (Q is true), the agreement
is still met (P ⇒ Q is true). The only instance in which the agreement is not met (P ⇒ Q is
false) is in the case that Joe did wash the dishes (P is true), but did not get the money from
his parents (Q is false).

To summarize, the statement P ⇒ Q is true unless P is true and Q is false, like it is shown in
the table below.

P Q P ⇒ Q
T T T
T F T
F T F
F F T

Truth table for the conditional

To explain the negation of the conditional, we use Joe’s story from the previous example. Joe
claims that his parents broke their verbal contract, while the parents deny Joe’s claim. In other
words, Joe’s parents say that P ⇒ Q is true, while Joe says that ¬(P ⇒ Q) is true. If you
were Joe’s lawyer, what evidence would you have to provide to win the case? You would need
to show that Joe washed the dishes and did not get paid. That is, you would need to show
that P ∧ (¬Q) is true.

Conclusion: The negation of the conditional statement P ⇒ Q is the statement P ∧ (¬Q).

Converse and Contrapositive

Definition 1. The converse of P ⇒ Q is the statement Q ⇒ P . The contrapositive of
P ⇒ Q is the statement (¬Q) ⇒ (¬P ).

Example 7. Consider the statements P : “Valérie’s cat is hungry” and Q: “Valérie’s cat
meows”.

• The implication P ⇒ Q reads as “If Valérie’s cat is hungry, then the cat meows”.

• The converse Q ⇒ P of P ⇒ Q reads as “If Valérie’s cat meows, then the cat is hungry”.
You can check that P ⇒ Q has not necessarily the same truth value as its converse
Q ⇒ P .

• The contrapositive of P ⇒ Q reads as “If Valérie’s cat does not meow, then the cat is
not hungry”. You can check that P ⇒ Q has the same truth value of (¬Q) ⇒ (¬P ).
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Equivalent statement

Definition 2. The statement P if and only if Q, written P ⇐⇒ Q, is readily the statement

(P ⇒ Q) ∧ (Q ⇒ P ).

Quantifiers

Suppose n is an integer and P (n) is a statement about n.

• If P (n) is true for at least one integer n, then we say “There exists n such that P (n)”.
This type of statement is called an existence statement and the symbol ∃ is used as a
shortcut for the “there exists” part.

• If P (n) is true no matter what value n takes, then we say “For all n, P (n)”. This type of
statement is called a universal statement and the symbol ∀ is used as a shortcut for the
“For all” part.

These statements are called quantified statements.

Example 8. Assume throughout this example that n is an integer.

a) “There exists n such that n > 0”. In this statement, P (n) is “n > 0. The statement P (10)
is true because 10 > 0, therefore the statement “∃n such that n > 0” is true because P (n)
is true for at least one integer n.

b) “For all n, n > 0”. The statement P (−1) is false since −1 is not greater than 0. Therefore,
the statement “∀n, P (n)” is false because P (n) is not true for every integer n.

c) “∃n such that |n| < 0”. This statement is false because there is no integer n with |n| < 0;
the absolute value turns every integer into a positive or zero integer.

Here are the ways to negate a quantified statement:

• The negation of “∃n such that P (n)” is “∀n, ¬(P (n))”.

• The negation of “∀n, P (n)” is “∃n such that ¬(P (n))“.

L.3 Methods of Proof

We will cover some methods to prove mathematical statements. The two we will cover are
direct proofs of a conditional statement and proofs by contradiction.

Direct Proof

There are many ways to proof a conditional statement. The one we will cover is a called “direct
proof”. If one of the other ways is needed later on in the semester, then I will explain it to you
on the spot. This is an agreement between you and me ;).

The “direct proof” method works as follows. We assume the hypothesis (the statement just
after the “if”) and use definitions, logic, and previously proved results to reach the desired
conclusion (the statement after the “then”).

Example 9. Prove the following statement: If a and b are even integers, then a + b is an
even integer.
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Solution. Suppose that a and b are even integers. In other words, this means a and b are
multiples of 2: There exists an integer n such that a = 2n and there exists an integer m such
that b = 2m. Then

a + b = 2n + 2m = 2(n + m).
This implies that a + b is a multiple of 2 and therefore it is an even integer. △

Proof by Contradiction

In a proof using the method called contradiction, the fact that a statement and its negation
have opposite truth values is used. Therefore, to prove that P is true, we suppose instead
that the statement ¬P is true and apply logic, definitions, and previous results to arrive at a
conclusion known to be false. Then this will imply ¬P must be false and thus P must be true.

Example 10. No integer is both even and odd.

Solution. Suppose that there is an integer n that is both even and odd (the negation of the
statement “∀n, n is neither even or odd”, which is equivalent to the statement in the example).
Since n is assumed even, n = 2k for some integer k. But n is also assumed odd, so n = 2l + 1.
Therefore, since n = n, we have

2k = 2l + 1 ⇒ 2k − 2l = 1 ⇒ 2(k − l) = 1.

Since k − l is an integer, the last equation means that 1 is a multiple of 2 (or that 1 is divisible
by 2), which is clearly false! Therefore the assumption that there is an integer n that is both
even and odd must be false and it turns out that no integer is both even and odd. △

Proof of An Equivalent Statement

To prove the statement “P ⇐⇒ Q”, it must be shown that P ⇒ Q is true and Q ⇒ P is true.

Proof of An Existential Statement

To prove a statement of the form “there exists an n such that P (n)”, the technique used is
“construction”. This means the object n will be found and be demonstrated that P (n) is true
for this choice of n.

Proof of A Universal Statement

The proof of a statement of the form “for all objects n, P (n)” is rather more subtle. It is really
hard to deal with all objects n at once. Instead, we think of an equivalent way to interpret
a universal statement. In fact, the statement “for all objects n, P (n)“ is equivalent to the
statement “If n is such an object, then P (n)”. For example, the statement “For all integers n,
|n| ≥ 0” has the same meaning as “If n is an integer, then |n| ≥ 0”.

Therefore, to prove a universal statement, we first select a single arbitrary object and proved
that the conclusion is true for that object. It is really important that the object chosen was
arbitrary.

Example 11. Prove the following statement: For all odd integers n and m, nm is odd.

Solution. Suppose that n is an odd integer and that m is an odd integer. This means there
exist integers k and l such that n = 2k + 1 and m = 2l + 1. Then

nm = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1.

Therefore, the product nm takes the form of an odd integer. △
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