University of Hawai'i

Lat tanese Solutions.
First name: \qquad

Question:	1	2	3	4	5	6	Total
Points:	10	10	10	10	6	4	50
Score:	-	-	-	-	-	-	-

Instructions:

- Write your complete name on your copy.
- Answer all 6 questions below.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 2 h period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- Lecture notes and the textbook are not allowed during the exam.

Your Signature:

\qquad

Page 2
\qquad
Write the complex number $\frac{(1-i)^{2}}{3+i} i$ in the form $x+i y$.

$$
\begin{aligned}
&(1-i)^{2}=(1-i)(1-i)=1-i-i+i^{2} \\
&=-2 i \\
& \frac{1}{3+i}=\frac{3-i}{|3+i|^{2}}=\frac{3-i}{10}=\frac{3}{10}-\frac{1}{10} i
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{(1-i)^{2}}{3+i} i & =\left(\frac{3}{10}-\frac{1}{10} i\right)(-2 i)(i) \\
& =2\left(\frac{3}{10}-\frac{1}{10} i\right) \\
& =\frac{3}{5}-\frac{1}{5} i
\end{aligned}
$$

Find the modulus of the complex number $\frac{1+i}{(1-i)(1+3 i)}$.

Page 4

Find the roots of the following equations: $(\overline{z-i})^{3}=8 i$.
Set $\omega=z-i$. Then

$$
\begin{aligned}
& \omega^{3}=8 i=8(\cos \pi / 2+i \sin \pi / 2) \\
& \Leftrightarrow \omega=2 \cos \left(\frac{\pi / 2+2 k \pi}{3}\right)+i \sin \left(\frac{\pi / 2+2 k \pi}{3}\right)
\end{aligned}
$$

$$
\text { for } k=0,1,2 \text {. }
$$

$$
\Rightarrow\left\{\begin{array}{l}
\omega_{1}=2(\cos (\pi / 6)+i \sin (\pi / 6))=\sqrt{3}+i \\
\omega_{2}=2\left(\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right)=-\sqrt{3}+i \\
\omega_{3}=2\left(\cos \left(\frac{9 \pi}{6}\right)+i \sin \left(\frac{9 \pi}{6}\right)\right)=-2 i
\end{array}\right.
$$

Hence

$$
\begin{aligned}
& z_{1}=w_{1}+i=\sqrt{3}+2 i \\
& z_{2}=w_{2}+i=-\sqrt{3}+2 i \\
& z_{3}=w_{3}+i=-i
\end{aligned}
$$

Let $f(z)=\frac{z}{z-1}$, with $z \neq 1$. Find the expression of the real and imaginary parts of f in terms of x and y.
Let $w=f(z)=u+i v$ and $z=x+i y$. Then

$$
\begin{aligned}
\omega & =\frac{(x+i y)(x-1-i y)}{(x-1)^{2}+y^{2}} \\
& =\frac{x(x-1)+y^{2}-i y}{(x-1)^{2}+y^{2}} \\
& =\frac{x^{2}-x+y^{2}}{(x-1)^{2}+y^{2}}+i \frac{-y}{(x-1)^{2}+y^{2}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \operatorname{Re} f(z)=u(x, y)=\frac{x^{2}-x+y^{2}}{(x-1)^{2}+y^{2}} \\
& \operatorname{Im} f(z)=v(x, y)=\frac{-y}{(x-1)^{2}+y^{2}}
\end{aligned}
$$

Assume that z_{1}, z_{2} are two complex numbers \qquad
Show that if $\operatorname{Re}\left(z_{1} \overline{z_{2}}\right)=\left|z_{1}\right|\left|z_{2}\right|$, then $\operatorname{Im}\left(z_{1} \overline{z_{2}}\right)=0$. Deduce that there exists a positive number α such that $z_{1}=\alpha z_{2}$.
Assume that $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=\left|z_{1}\right|\left|z_{2}\right|$. Then

$$
\begin{aligned}
& \frac{z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}}{2}=\left|z_{1}\right|\left|z_{2}\right| \\
\Rightarrow & \left(\frac{\left(z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}\right.}{2}\right)^{2}=z_{1} \bar{z}_{2} \bar{z}_{1} z_{2} \\
\Rightarrow & \frac{\left(z_{1} \bar{z}_{2}\right)^{2}+2 z_{1} \bar{z}_{2} \overline{z_{1}} z_{2}+\left(\overline{z_{2}} z_{2}\right)^{2}}{4}=\frac{4 z_{1} \bar{z}_{2} \overline{z_{1}} z_{2}}{4} \\
\Rightarrow & \frac{\left(z_{1} \bar{z}_{2}\right)^{2}-2 z_{1} \bar{z}_{2} \bar{z}_{1} z_{2}+\left(\overline{z_{1}} z_{2}\right)^{2}}{4}=0 \\
\Rightarrow & \left(\frac{\left(z_{1} \bar{z}_{2}-\overline{z_{1}} z_{2}\right.}{2}\right)^{2}=0 \Rightarrow\left(\frac{2 i \operatorname{Im} z_{1} \bar{z}_{2}}{2}\right)^{2}=0 \\
\Rightarrow & \left(\operatorname{Im} z_{1} \bar{z}_{2}\right)^{2}=0 \quad \Rightarrow \operatorname{Im}\left(z_{1} \bar{z}_{2}\right)=0 .
\end{aligned}
$$

Assume $z_{1} \neq 0, z_{2} \neq 0$ and let $\beta:=z_{1} \bar{z}_{2} \in \mathbb{R}^{+}$.

$$
\begin{aligned}
& \Rightarrow z_{1}\left|z_{2}\right|^{2}=\beta z_{2} \Rightarrow z_{1}=\frac{\beta}{\left|z_{2}\right|^{2}} z_{2}=\alpha z_{2} \\
& \text { with } \alpha:=\frac{\beta}{\left|z_{2}\right|^{2}} \in \mathbb{R}^{+} .
\end{aligned}
$$

Answer the following questions with True or False. Write down you answers on the line at the end of each question. Justify briefly your answer in the space after the statement of the problem.
(a) For any complex numbers z_{1} and z_{2}, we have $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$.

$$
\begin{aligned}
& z_{1}=\cos (\pi) \Rightarrow z_{1} z_{2}=\cos (2 \pi)=\cos (0) . \\
& z_{2}=\cos (\pi) \\
& \Rightarrow \operatorname{Arg}\left(z_{1} z_{2}\right)=0 \neq 2 \pi=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right) .
\end{aligned}
$$

(a) False.
(b) If $f(z)=z^{4}$, then $\rho(\theta, r)=r^{4}$ and $\phi(\theta, r)=4 \theta$.

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
\Rightarrow p=r^{4} & \text { and } \phi=4 \theta .
\end{aligned}
$$

(b) True.
(c) If $|z-3 i| \leq 1$, then $|z-4| \leq 6$.

$$
\begin{aligned}
|z-4| & \leq|z-3 i|+|3 i-4| \\
& \leq 1+5=6
\end{aligned}
$$

(c) True.
(d) If $z=i$, then $i^{4 n}=1$, for any integer n.

$$
\begin{aligned}
& i^{4 n}=\left(i^{4}\right)^{n}=\left(i_{i}^{2}\right)^{n}=1^{n}=1, n \geq 0 \\
& i^{-4 k}=\frac{1}{i^{4 n}}=\frac{1}{1}=1, k>0 .
\end{aligned}
$$

(d) True.

