University of Hawai'i

 co..... SouthoaFirst name: \qquad

Question:	1	2	3	4	5	Total
Points:	10	10	20	6	4	50
Score:	-	-	-	-	-	-

Instructions:

- Write your complete name on your copy.
- There are 5 questions on the exam.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 50 min period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- Lecture notes and the textbook are not allowed during the exam.

Your Signature:

\qquad

Page 2
\qquad
Find the value of the following limits, if the limit exists. If the limit does not exist, explain why.
(a) (5 points) $\lim _{z \rightarrow 0} z \operatorname{Arg}(z)$
(b) $\left(5\right.$ points) $\lim _{z \rightarrow 0} \frac{\bar{z}}{z}$.
(a) We have $|\operatorname{Arg}(z)| \leqslant \pi$. Since $z \rightarrow 0$ as $z \rightarrow 0$, by Squeeze Theorem

$$
\lim _{z \rightarrow 0} z \operatorname{Arg} z=0
$$

(b) $z=x \rightarrow 0$, then

$$
\lim _{z \rightarrow 0} \frac{\bar{z}}{z}=\lim _{x \rightarrow 0} \frac{x}{x}=1
$$

Let $z=r y \rightarrow 0$. Then

$$
\lim _{z \rightarrow 0} \frac{\bar{z}}{z}=\lim _{y \rightarrow 0} \frac{-i y}{i y}=-1 .
$$

So, $\lim _{z \rightarrow 0} \frac{\bar{z}}{z} \nexists$. domain:

$$
f(z)=z^{3}=\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right) .
$$

The function f is defined $\forall z \in \mathbb{C}$.
We have $u(x, y)=x^{3}-3 x y^{2}$

$$
v(x, y)=3 x^{2} y-y^{3} .
$$

(1)

$$
\left.\begin{array}{l}
u_{x}=3 x^{2}-3 y^{2} \\
v_{y}=3 x^{2}-3 y^{2}
\end{array}\right\} u_{x}=v_{y}
$$

(2)

$$
\left.\begin{array}{l}
u_{y}=-6 x y^{2} \\
v_{x}=6 x y
\end{array}\right\} u_{y}=-v_{x} .
$$

The Caucly-Riemann Equations are satisfied throughout $U=\mathbb{C}$ $\Rightarrow f$ is analytic on \mathbb{C}.
\qquad
(a) (10 points) $\int_{\left[z_{2}, z_{1}\right]} \bar{z} d z$, where $\left[z_{2}, z_{1}\right]$ is the line segment joining $z_{1}=-2$ and $z_{2}=1$.
(b) (10 points) $e^{z} d z$, where $z_{1}=\pi, z_{2}=-1$, and $z_{3}=-1-i \pi$.
(a) $\left[z_{2}, z_{1}\right]=\left\{(1-t) z_{2}+t z_{1}: 0 \leq t \leq 1\right\}$.

So, $d z=\left(-z_{2}+z_{1}\right)$

$$
\begin{aligned}
\Rightarrow \int_{[2,2, z]} & \bar{z} d z=\int_{0}^{1} \overline{(1-t) z_{2}+t z_{1}}\left(-z_{2}+z_{1}\right) d t \\
& =(-1-2) \int_{0}^{1}(1-t)(1)+t(-2) d t \\
& =(-3) \int_{0}^{1} 1-3 t d t=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } F(z)=z e^{z}-e^{z} \Rightarrow F^{\prime}(z)=z e^{z} \\
& \Rightarrow \int_{\left[z_{1}, z_{1}, z_{3}\right]} z e^{z} d z=F\left(z_{3}\right)-F\left(z_{1}\right) \\
& =(-1-i \pi) e^{-1-i \pi}-e^{-1-i \pi} \\
& -\pi e^{\pi}+e^{\pi} \\
& =(1-i \pi) e^{-1}+e^{-1}-\pi e^{\pi}+e^{\pi} \\
& =\frac{(2-i \pi)}{e}+(1-\pi) e^{\pi}
\end{aligned}
$$

\qquad (6 pts)
Let $C_{R}\left(z_{0}\right)$ be the positively oriented circle with center z_{0} and radius $R>0$.
(a) (3 points) Compute the path integral $\int_{C_{R}\left(z_{0}\right)} \operatorname{Im} z d z$.
(b) (3 points) Use part (a) to show that $f(z)=\operatorname{Im} z$ has no antiderivative on any open subset of \mathbb{C}.
(a) Write $\operatorname{Im} z=\frac{z-\bar{z}}{2_{i}}$. Then

$$
\begin{align*}
\int_{C_{R}\left(z_{0}\right)} & \frac{\operatorname{Im} z}{2 i} d z=\frac{1}{2 i}\left(\int_{C_{R}\left(z_{0}\right)} z d z-\int_{C_{R}\left(z_{0}\right)} \bar{z} d z\right) \\
& =-\frac{1}{2 i} \int_{0}^{2 \pi}\left(\overline{z_{0}}+r e^{-i \theta}\right) i r e^{i \theta} d \theta \\
& =-\frac{1}{2 \pi} \int_{0}^{2 \pi} r^{2} d \theta=-r^{2} \pi . \tag{*}
\end{align*}
$$

(b) Assume that there is an F, analytic an U sit. $\quad F^{\prime}(z)=\operatorname{Im} z$.
Let $\overline{B_{R}\left(z_{0}\right)} \subset U, f_{n}$ some $z_{0} \in U, R>0$.
Then, $\quad \int_{C_{R}\left(z_{0}\right)} \operatorname{Im} z d z=\int_{C_{R}\left(z_{0}\right)} F^{\prime}(z) d z=0$
because $C_{R}\left(z_{0}\right)$ is closed. This contradicts (*),
So, Am can't have an antidenivative en any open set $U \subset \mathbb{C}$.

Answer the following questions with True or False. Write down you answers on the line at the end of each question. Justify briefly your answer in the space after the statement of the problem.
(a) The function $\log (z)$ is analytic on $\mathbb{C} \backslash\{0\}$.

Not analytic on $(-\infty, 0]$.
(a) False.
(b) If F is an entire antiderivative of a function f, then $\int_{\gamma} f(z) d z=0$.

$$
\begin{aligned}
& f(z)=z \quad \text { and } y=[0, i] . \\
& \int_{y} z d z=\left.\frac{z^{2}}{2}\right|_{0} ^{i}=-\frac{1}{2} \neq 0
\end{aligned}
$$

(b)

False.
(c) For any $R>0$ and any $n \in \mathbb{Z}$, we have $\int_{C_{R}(0)} \frac{1}{z^{n}} d z=0$.

$$
\int_{C, 10)} \frac{1}{z} d z=2 \pi i \neq 0 .
$$

(c)
f is the
ed.
(d) If f is analytic on an open set U and $f^{\prime}(z)=0$ for any $z \in U$, then f is the constant (/ 1) function.

U should be
Dimply
connected.
(d)

False.

