Problem 1

Here are two ways to solve this exercise:

① Consider z_1 and z_2 as points in the plane. So $z_1 = (1,1)$ and $z_2 = (-1,-2)$. Then, we have to find the line segment passing through the points z_1 and z_2 . The slope a is given by

$$a = \frac{\Delta y}{\Delta x} = \frac{-2 - 1}{-1 - 1} = \frac{3}{2}.$$

Therefore, any point z=(x,y) on the line segment will by of the form $y=\frac{3}{2}x+b$, with $-1 \le x \le 1$. We will find b. We will use the fact that $z_1=(1,1)$ is on the line segment, so that

$$1 = \frac{3}{2}(1) + b \quad \Rightarrow \quad b = -\frac{1}{2}.$$

Therefore, $z = (x, y) = (x, \frac{3}{2}x - \frac{1}{2}) = x + (\frac{3}{2}x - \frac{1}{2})i$, for $-1 \le x \le 1$.

However, notice that this line segment starts at z_2 and terminates at z_1 . To obtain the right parametrization, we use the reverse of the parametrization. Therefore, the interval is [-1,1] and so the reverse of the line segment is

$$\gamma(t) = (1 + (-1) - t) + \left(\frac{3}{2}(1 + (-1) - t) - \frac{1}{2}\right)i$$

= $-t + \left(-\frac{3}{2}t - \frac{1}{2}\right)i$

for $-1 \le t \le 1$.

② The second approach is a little more straightforward. The line segment from z_1 to z_2 is given by

$$\gamma(t) = tz_2 + (1 - t)z_1$$

$$= t(-1 - 2i) + (1 - t)(1 + i)$$

$$= (-t + 1 - t) + (-2t + 1 - t)i$$

$$= (1 - 2t) + (1 - 3t)i$$

with $0 \le t \le 1$.

Problem 3

The equations of the parametrization of a circle centered at 3i = (0,3) and of radius 1 is

$$x(t) = \cos(t)$$
 and $y(t) = 3 + \sin(t)$ $(0 \le t \le 2\pi)$.

So, we get

$$\gamma(t) = \cos(t) + (3 + \sin(t))i = 3i + \cos(t) + i\sin(t) = 3i + e^{it}$$

with $0 \le t \le 2\pi$.

Problem 5

The parametrization of the unit circle is e^{it} , for $-\pi \leq t \leq \pi$. Therefore, the parametrization of the arc is

$$\gamma(t) = e^{it} \quad \left(-\frac{\pi}{4} \le t \le \frac{\pi}{4}\right).$$

Problem 6

We will compute the reverse curve of the curve in Exercise 5. Therefore, we get

$$\gamma(t) = e^{-it} \quad \left(-\frac{\pi}{4} \le t \le \frac{\pi}{4}\right).$$

Problem 9

A parametrization of the circle containing the arc in Figure 3.15 is

$$-3 + 2i + 5e^{it}$$

with $-\pi \leq t \leq \pi$. Then, a parametrization of the arc of the circle is

$$z(t) = -3 + 2i + 5e^{it} \quad (-\frac{\pi}{2} \le t \le 0).$$

Problem 11

The equation of a parabola is $y = x^2$. Set x = t, for $-1 \le t \le 1$. Therefore

$$\gamma(t) = x + iy = t + it^2$$

for $-1 \le t \le 1$.

Problem 12

The reverse is obtained by replacing t with $b+a-t=0+(-\frac{\pi}{2})-t=-\frac{\pi}{2}-t$. Therefore

$$w(t) = z(-\frac{\pi}{2} - t) = -3 + 2i + 5e^{i(-\frac{\pi}{2} - t)}$$
$$= -3 + 2i + 5e^{-\frac{\pi}{2}i}e^{-it}$$
$$= -3 + 2i - 5ie^{-it}$$

for $-\frac{\pi}{2} \le t \le 0$.

Problem 14

The reverse is given by replacing t with b + a - t = -t. Therefore,

$$\gamma(t) = -t + it^2.$$

Problem 19

Using the product rule, we have

$$f'(t) = (t)'(e^{-it}) + t(e^{-it})' = e^{-it} - ite^{-it}.$$

Problem 22

Using the quotient rule:

$$f'(t) = \frac{(2+i+t)'(-i-2t) - (2+i+t)(-i-2t)'}{(-i-2t)^2}$$

$$= \frac{(1)(-i-2t) - (2+i+t)(-2)}{(i+2t)^2}$$

$$= \frac{-i-2t+4+2i+2t}{(i+2t)^2}$$

$$= \frac{4+i}{(i+2t)^2}.$$

Problem 24

Notice that F(z) = Log(z) is holomorphic on $\mathbb{C}\setminus(-\infty,0]$. The curve $\gamma(t) = it$ in contained in $\mathbb{C}\setminus(-\infty,0]$ whenever $t \neq 0$. Therefore $f(t) = F(\gamma(t))$, for $t \neq 0$ and hence

$$f'(t) = F'(\gamma(t))\gamma'(t) = \frac{1}{it}i = \frac{1}{t}.$$