Problems: 9, 11, 13, 14, 16, 18, 20.

Problem 9

(a) Assume that $|z| \leq 1$. Then we have

$$\lim_{n \to \infty} f_n(z) = \lim_{n \to \infty} \left(\frac{1}{n}\right) \left(\frac{z + 1/n}{z/n^2 + 2}\right) = (0)(z/2) = 0.$$

Therefore $f_n \to 0$ on $\overline{B_1(0)}$.

(b) If $|z| \leq 1$, notice that

$$|nz + 1| \le n|z| + 1 \le n + 1$$

and

$$|z + 2n^2| \ge 2n^2 - |z| \ge 2n^2 - 1.$$

Therefore, for any $|z| \leq 1$, we get

$$|f_n(z)| \le \frac{n+1}{2n^2-1} \quad \Rightarrow \quad \lim_{n \to \infty} \max_{|z| \le 1} |f_n(z)| \le \lim_{n \to \infty} \frac{n+1}{2n^2-1} = 0.$$

Hence $f_n \rightrightarrows 0$ on $\overline{B_1(0)}$.

(c) The uniform convergence did not fail in this case.

Problem 11

(a) Notice that if z = i, then

$$f_n(i) = \frac{e^{-n} - e^n}{2in^2}.$$

Therefore,

$$\lim_{n \to \infty} |f_n(i)| = \lim_{n \to \infty} \frac{e^n - e^{-n}}{2n^2} = \infty.$$

So the limit does not exist. In fact, for any z = x + iy with $y \neq 0$ and $|z| \leq 1$, we have

$$\lim_{n\to\infty} |f_n(z)| = \infty.$$

Indeed, $f_n(z) = \frac{e^{inx-ny} - e^{-inx+ny}}{2in^2}$ and therefore

$$|f_n(z)| = \frac{|e^{inx-ny} - e^{-inx+ny}|}{2n^2} \ge \frac{||e^{-inx+ny}| - |e^{inx-ny}||}{2n^2} = \frac{|e^{ny} - e^{-ny}|}{2n^2} = \frac{|\sinh(ny)|}{n^2}$$

Because $y \neq 0$, we have $\lim_{n\to\infty} |\sinh(ny)| = \infty$ which proves the claim. Therefore, the functions f_n do not converge pointwise on $B_1(0)$.

- (b) Since f_n do not converge pointwise on $\overline{B_1(0)}$, they can't converge uniformly.
- (c) Let E = [-1, 1]. Then we have $nz \in \mathbb{R}$ and so that $|\sin(nz)| \le 1$. Therefore for $z \in [-1, 1]$

$$|f_n(z)| \le \frac{1}{n^2}$$
 \Rightarrow $\lim_{n \to \infty} \max_{-1 \le x \le 1} |f_n(z)| \le \lim_{n \to \infty} \frac{1}{n^2} = 0.$

Hence $f_n \Rightarrow 0$ on [-1, 1].

Problem 13

We have $u_n(z) = \frac{z^n}{n(n+1)}$ for $|z| \leq 1$. Notice that

$$|u_n(z)| \le \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$$

The series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1.$$

By the Weierstrass M-test, the series $\sum_{n=1}^{\infty} \frac{z^n}{n(n+1)}$ converges uniformly on $\overline{B_1(0)}$.

Problem 14

We have $u_n(z) = \frac{z^n}{n(n+1)}$ for $|z| \le 1/3$. Notice that $|z| \le 1/3 \iff 3|z| \le 1$. Therefore

$$|u_n(z)| \le \frac{1}{n(n+1)}.$$

Now we have

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 < \infty.$$

By the Weierstrass M-test, the series $\sum_{n=1}^{\infty} \frac{(3z)^n}{n(n+1)}$ converges uniformly on $\overline{B_{1/3}(0)}$.

Problem 16

We have $u_n(z) = \left(\frac{z^2-1}{4}\right)^n$ for $|z| \leq 1$. Notice that

$$|u_n(z)| = \left(\frac{|z^2 - 1|}{4}\right)^n \le \left(\frac{|z|^2 + 1}{4}\right)^n \le \left(\frac{1 + 1}{4}\right)^n = \left(\frac{1}{2}\right)^n.$$

The series $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is convergent (a geometric series with z=1/2<1). Therefore, by the Weierstrass M-test, the series $\sum_{n=0}^{\infty} \left(\frac{z^2-1}{4}\right)^n$ converges uniformly on $\overline{B_1(0)}$.

Problem 18

We have $u_n(z) = \frac{1}{(5-z)^n}$ for $|z| \leq \frac{7}{2}$. First, notice that for $|z| \leq 7/2$

$$|5-z|^n \ge (5-|z|)^n \ge (5-3.5)^n = \left(\frac{3}{2}\right)^n.$$

Hence, we get

$$|u_n(z)| = \frac{1}{|5-z|^n} \le \left(\frac{2}{3}\right)^n.$$

The series $\sum_{n=0}^{\infty} (\frac{2}{3})^n$ is convergent (a geometric series with z=2/3<1). Therefore, by the Weierstrass M-test, the series $\sum_{n=0}^{\infty} \frac{1}{(5-z)^n}$ converges uniformly on $|z| \leq 7/2$.

Problem 20

Notice that $|z-1| \le |z| + 1 \le 3$ when $|z| \le 2$. Therefore, for $|z| \le 2$, we have

$$\left| \frac{(z-1)^n}{4^n} \right| \le \frac{3^n}{4^n} = \left(\frac{3}{4}\right)^n.$$

The series $\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n$ is convergent (a geometric series with z=3/4<1). Therefore, by the Weierstrass M-test, the series $\sum_{n=0}^{\infty} \frac{(z-1)^n}{4^n}$ converges uniformly on $\overline{B_2(0)}$.