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Abstract. Motivated by work on generalized Cauchy–Riemann equa-
tions, we describe the set of involutions of the multicomplex numbers
that preserve imaginary units. We count these involutions by translating
the problem into the language of combinatorial matrix theory. In pass-
ing, we obtain new results on multicomplex numbers that are surprisingly
unknown in the literature.

Removing the condition of preserving imaginary units, we find a for-
mula for the number of r-involutions on multicomplex spaces. Our proof
is based on the construction of a bijection between real-linear automor-
phisms of the multicomplex numbers of order n and the set of signed
permutations of length 2n−1.

1. Introduction

Let f be a function on an associative real algebra A with multiplicative
identity. We say that f is an involution of A if f is a real-linear automor-
phism satisfying f(f(a)) = a for any a ∈ A. The usual definition of an
involution involves only the condition f(f(a)) = a. However, for the quater-
nions, bicomplex numbers, and general algebras over commutative fields (see
[8], [10], [14]), the above definition was adopted. Therefore, to be consistent
with these references, we will adopt this definition.

When A is the field of quaternions, we know from [8, 10] that there are
infinitely many involutions. If q = a + bi + cj + dk is a quaternion with the
usual rules

ij = −ji = k, jk = −kj = i, ki = −ik = j
and i2 = j2 = k2 = −1, then any involution is given by fµ(q) = µqµ, where
µ = a0i + b0j + c0k with a2

0 + b2
0 + c2

0 = 1. For other real algebras, however,
the situation might change drastically.

In a recent note [14], the author replaced quaternions by the commu-
tative ring of bicomplex numbers. A bicomplex number s is defined as
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s = a + bi1 + ci2 + di1i2 with the rules
i1i2 = i2i1, i2

1 = i2
2 = −1.

The set of bicomplex numbers is usually denoted by MC(2) or BC. Main
references for these are [12, 15]. From [14, Theorem 1], we know there are six
involutions of MC(2). This result contrasts with the similar one obtained
for quaternions and therefore makes the set of bicomplex numbers akin to
the complex numbers, where the only involutions are z 7→ z and z 7→ z̄.

The goal of this paper is to extend the result from [14] to the multicomplex
numbers of order n ≥ 1, denoted by MC(n). The multicomplex numbers
are a generalization of the complex numbers and the bicomplex numbers to
higher dimensions. Section 2 gives some preliminaries on the multicomplex
numbers.

Our original motivation for this problem comes from [20], where the au-
thors used a specific class of involutions to obtain Cauchy–Riemann equa-
tions characterizing multicomplex holomorphic functions. Therefore, the
present work has potential applications to hypercomplex analysis and could
be used to describe classes of functions other than the family of multicomplex
holomorphic functions through new types of Cauchy–Riemann equations.

To state our first main result, we need to introduce some notations. We
let i1, . . . , in be the elementary commuting imaginary units of MC(n) and
define the set I(n) as the set of numbers that can be written as i1

a1 · · · in
an

with ak ∈ {0, 1}. Observe that since i2
k = −1, 1 ≤ k ≤ n, and the elementary

units commute, the elements of I(n) square to ±1. Our present investigation
highlighted a surprising phenomenon in the multicomplex numbers: there
are numbers squaring to ±1 that are not in the set of units I(n) (see Section
2 for more details on this). In other words, we discovered new square roots
of 1 and −1 in the space of multicomplex numbers.

This last phenomenon is not present in the set of bicomplex numbers,
and therefore every involution obtained in [14] maps every element of I(2)
to an element of I(2). It is therefore natural to ask the following question:
how many involutions of MC(n) send the units of I(n) to the units of I(n)?
We call such involutions I(n)-preserving involutions. The following theorem
answers this question.

Theorem 1.1. The number of I(n)-preserving involutions of MC(n), n ≥ 1,
is

n∑
k=⌈n/2⌉

( k−1∏
j=1

2n − 2j

2k − 2j

)( n−k−1∏
j=0

(2k − 2j)
)

2k,

where an empty product is understood to be equal to 1.
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We could not find a reference for the sequence of values given by the
formula in Theorem 1.1 on the On-Line Encyclopedia of Integer Sequences.
The idea of the proof of Theorem 1.1 is to translate the original problem into
a counting problem in combinatorial matrix theory. We were therefore led
to count certain matrices with entries in {0, 1} subject to precise constraints
using linear algebra tools. The proof of the last theorem is presented in
Section 3.

On the other hand, we note that counting involutions is very natural in
many settings other than real algebras, where involutions play a fundamental
role. Perhaps the most prominent example is counting involutions on the
symmetric group Sn (see, for instance, [6, 13]).

In Section 4, we investigate a connection between signed permutations of
length n and real-linear automorphisms of MC(n). A signed permutation
of length n is a permutation of {1, 2, . . . , n} written in one-line notation
where each entry may have a bar over it. For instance, π = 312 is a signed
permutation. We write Bn for the set of signed permutations of length
n, which also corresponds to the group of symmetries of a hypercube, the
hyperoctahedral group, which is a Coxeter group of type B and of rank n
[5, 7, 16]. Precisely, we show the following result.

Theorem 1.2. For each integer n ≥ 1, there is a bijection between the
set of real-linear automorphisms of MC(n) and B2n−1. Furthermore, this
bijection sends the identity function to the identity signed permutation and
is compatible with composition.

The construction of the bijection in the last theorem is based on new
characterizations of multicomplex numbers squaring to 1 and −1 that were
surprisingly unknown in the literature.

As a consequence of Theorem 1.2, we obtain an exact formula for the num-
ber of involutions that are not necessarily I(n)-preserving. The statement
and the proof of this result are presented in Section 5. Lastly, we also work
out a formula giving the number of r-involutions. Here, an r-involution is a
real-linear automorphisms f : MC(n) → MC(n) such that f (r) = Id, where
f (r) is the r-fold composition of f with r a positive integer and Id is the
identity map. The proof of this result is presented in Section 6.

2. Background on multicomplex numbers

In 1892, Segre [19] introduced an algebraic structure that he called n-
complex numbers with the goal of defining a multiplication operation be-
tween vectors of Cn, for n ≥ 2.
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Interest in the theory of n-complex numbers (nowadays referred to as mul-
ticomplex numbers) and its applications have grown over the past decades.
For example, they are used to introduce generalizations of concepts from
real and complex analysis, e.g., multicomplex fractional operators [4], mul-
ticomplex hyperanalytic functions [22], Laurent series [11], Riemannian and
semi-Riemannian geometry [23], and multicomplex holomorphic functions
[20]. We also mention the use of multicomplex numbers to generalize the
Mandelbrot set to higher dimensions [2, 3, 9, 17], in theoretical physics to
generalize the linear and non-linear Schrödinger equation [18, 21], and in
machine learning to generalize complex-valued neural networks [1].

A modern treatment of these numbers is presented in [15] with a preface
describing the history of the development of associative algebras. We will
mainly follow the presentation given in [2], with some slight changes in the
notations.

2.1. Multicomplex numbers. The definition of the multicomplex num-
bers is given recursively. Let MC(0) be the set of real numbers and let
MC(n), n ≥ 1, be the set

MC(n) := {η = η1 + η2in : η1, η2 ∈ MC(n − 1), i2
n = −1}.(2.1)

For example, when n = 1, we obtain the set MC(1) of complex numbers
η1+η2i1, where i2

1 = −1. When n = 2, we obtain the set MC(2) of bicomplex
numbers η1 + η2i2, where η1, η2 are complex numbers, i2

2 = −1, and i1 ̸= i2.
We say that two multicomplex numbers η and ζ are equal if and only if
η1 = ζ1 and η2 = ζ2. If we let η2 = 0 in the expression of a multicomplex
number η = η1 + η2in, we see that MC(n − 1) ⊂ MC(n).

The set of multicomplex numbers becomes a commutative ring if we endow
it with the following algebraic operations:

1) η + ζ := (η1 + ζ1) + (η2 + ζ2)in;
2) ηζ := (η1ζ1 − η2ζ2) + (η1ζ2 + η2ζ1)in.

These last operations must be understood recursively.
Let η = η1 + η2in be a multicomplex number. Then η1, η2 ∈ MC(n − 1),

so there are multicomplex numbers η11, η12, η21, η22 ∈ MC(n − 2) such that
η1 = η11 + η12in−1 and η2 = η21 + η22in−1. Replacing the η1 and η2 in the
expression for η, we obtain the representation of a multicomplex number
ζ ∈ MC(n) in terms of four components in MC(n − 2),

ζ = (η11 + η12in−1) + (η21 + η22in−1)in.

From the definition of the multiplication, we can distribute in to obtain
ζ = η11 + η12in−1 + η21in + η22in−1in.
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For example, a bicomplex number η = η1 + η2i2 can be expressed as a linear
combination involving four real coefficients,

η = η11 + η12i1 + η21i2 + η22i1i2.

We can continue this process recursively until we reach the set MC(0). At
each stage k (1 ≤ k ≤ n) of the process, we obtain a representation of
a multicomplex number in terms of 2k multicomplex numbers in MC(n −
k). All of these representations are called the canonical representation (or
the Cartesian representation) of a multicomplex number. The canonical
representation we are interested in is the one in terms of the 2n components
in MC(0). To be more explicit, recall that I(n) is the set of all different
possible products of the elements in the set {1, i1, i2, . . . , in}. Since the
multiplication is commutative, the cardinality of I(n) is 2n. Therefore, we
can write any multicomplex number as

η =
∑

i∈I(n)
ηii,(2.2)

where ηi ∈ R. This tells us that the elements of I(n) form a (real-)basis of
MC(n). For instance, when n = 2 or 3, the following holds:

1) For η ∈ MC(2), we have
η = η1 + ηi1i1 + ηi2i2 + ηi1i2i1i2.

2) For η ∈ MC(3), we have
η = η1 + ηi1i1 + ηi2i2 + ηi1i2i1i2 + ηi3i3

+ ηi1i3i1i3 + ηi2i3i2i3 + ηi1i2i3i1i2i3.

Using this representation and the algebraic operations defined above, we can
view the set MC(n) as a commutative and associative algebra on the set of
real numbers.

2.2. An idempotent representation for multicomplex numbers. Of
particular importance in the set of multicomplex numbers are the numbers
η such that η2 = η, which are called idempotent numbers. In particular, we
consider

en := 1 + in−1in

2 and en := 1 − in−1in

2 .

An additional property that these numbers have is that enen = 0. If we
multiply a multicomplex number η = η1 +η2in by en and by en respectively,
we obtain

ηen = (η1 − η2in−1)en and ηen = (η1 + η2in−1)en.
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Since en + en = 1, summing ηen and ηen yields the idempotent representa-
tion of a multicomplex number, namely

η = (η1 − η2in−1)en + (η1 + η2in−1)en.

We see that the numbers multiplying en and en are elements of MC(n − 1),
which we call the idempotent components of η. We will denote them by
ηen and ηen , respectively. The idempotent representation can therefore be
rewritten as

η = ηenen + ηenen.(2.3)
Note that two multicomplex numbers are equal if and only if their idempo-
tent components are equal.

The idempotent representation is important because it transforms the
multiplication of multicomplex numbers into a component-wise multiplica-
tion. More precisely, if η = ηenen + ηenen and ζ = ζenen + ζenen, then we
have

ηζ = ηenζenen + ηenζenen.(2.4)
We now apply this result to the idempotent components of a multicomplex

number η. Define

en−1 := 1 + in−2in−1

2 and en−1 := 1 − in−2in−1

2 .

Then, the idempotent components ηen and ηen of η ∈ MC(n) can be written
as

ηen = ηen−1enen−1 + ηen−1enen−1

and
ηen = ηen−1enen−1 + ηen−1enen−1,

where ηen−1en , ηen−1en , ηen−1en , ηen−1en ∈ MC(n − 2). Replacing these in the
idempotent representation of η ∈ MC(n), we obtain a second idempotent
representation in terms of components in MC(n − 2),

η = ηen−1enen−1en + ηen−1enen−1en + ηen−1enen−1en + ηen−1enen−1en.

More generally, define the following elements for each integer k ≥ 2:

ek := 1 + ik−1ik

2 and ek := 1 − ik−1ik

2 .

We then define a family of sets E(k, n) inductively for n ≥ 2 and 2 ≤ k ≤ n:
1) E(n, n) := {en, en} for k = n;
2) E(k, n) := E(k + 1, n)ek ∪ E(k + 1, n)ek for 2 ≤ k < n.
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Now, for any 2 ≤ k ≤ n, an induction argument shows that the cardinality
of E(k, n) is 2n−k+1. Also, by induction, we have that if ε ∈ E(k, n), then
ε2 = ε, and if ε1, ε2 ∈ E(k, n) with ε1 ̸= ε2, then ε1ε2 = 0.

Finally, any multicomplex number η ∈ MC(n) can be rewritten as
η =

∑
ε∈E(k,n)

ηεε,

where ηε ∈ MC(k − 1) for all ε ∈ E(k, n). The special case when k = 2 will
be of particular importance to us. For this reason, we let En := E(2, n) and
therefore any η ∈ MC(n) can be written as
(2.5) η =

∑
ε∈En

ηεε,

where ηε ∈ MC(1) for all ε ∈ En.
These new idempotent representations still have the advantage of simpli-

fying the operation of multiplication. If
η =

∑
ε∈E(k,n)

ηεε and ζ =
∑

ε∈E(k,n)
ζεε,

then the following holds:
1) η = ζ if and only if ηε = ζε for all ε ∈ E(k, n);
2) η + ζ = ∑

ε∈E(k,n)(ηε + ζε)ε;
3) ηζ = ∑

ε∈E(k,n)(ηεζε)ε.

2.3. Representation theorems and bijections. We use the notation Un

to denote the set of multicomplex numbers squaring to −1 and Hn for num-
bers squaring to 1, namely

Un := {η ∈ MC(n) : η2 = −1} and Hn := {η ∈ MC(n) : η2 = 1}.

We also write En for the set of idempotent elements of MC(n), that is,
En := {η ∈ MC(n) : η2 = η}.

For example, U3 contains the numbers

1) i1, −i1;
2) i2, −i2;
3) i3, −i3;
4) i1i2i3, −i1i2i3;

5) i1+i2+i3+i1i2i3
2 , − i1+i2+i3+i1i2i3

2 ;
6) i1−i2−i3+i1i2i3

2 , − i1−i2−i3+i1i2i3
2 ;

7) i1+i2−i3−i1i2i3
2 , − i1+i2−i3−i1i2i3

2 ;
8) i1−i2+i3−i1i2i3

2 , − i1−i2+i3−i1i2i3
2 ,

while H3 contains
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1) 1, −1;
2) i1i2, −i1i2;
3) i1i3, −i1i3;
4) i2i3, −i2i3;

5) 1+i1i2+i1i3+i2i3
2 , −1+i1i2+i1i3+i2i3

2 ;
6) 1−i1i2−i1i3+i2i3

2 , −1−i1i2−i1i3+i2i3
2 ;

7) 1+i1i2−i1i3−i2i3
2 , −1+i1i2−i1i3−i2i3

2 ;
8) 1−i1i2+i1i3−i2i3

2 , −1−i1i2+i1i3−i2i3
2 ,

and E3 contains

1) 1, 0;
2) 1+i1i2

2 , 1−i1i2
2 ;

3) 1+i1i3
2 , 1−i1i3

2 ;
4) 1+i2i3

2 , 1−i2i3
2 ;

5) 3+i1i2+i1i3+i2i3
4 , 1−i1i2−i1i3−i2i3

4 ;
6) 3−i1i2−i1i3+i2i3

4 , 1+i1i2+i1i3−i2i3
4 ;

7) 3+i1i2−i1i3−i2i3
4 , 1−i1i2+i1i3+i2i3

4 ;
8) 3−i1i2+i1i3−i2i3

4 , 1+i1i2−i1i3+i2i3
4 .

Also note that the set En contains many more elements than the set En.
For example, the elements of E3 correspond to the second entry in items
5)–8) in the list of elements of E3.

The above examples suggest that there is a bijection between Un and Hn.
It can be given explicitly as follows.

Proposition 2.1. Let u be any element of Un. We have

Un = uHn and Hn = uUn.

Proof. Fix u ∈ Un. Define the map f : Hn → Un by f(h) := uh. Then
f is injective. If v ∈ Un, then −uv ∈ Hn because (−uv)2 = 1. Therefore,
there is an h ∈ Hn such that h = −uv and so uh = v. This means that f is
surjective and therefore f is a bijection. Since f(Hn) = Un, we obtain the
first equality. The second equality is obtained similarly. □

We are now ready to prove the following characterization of multicomplex
numbers squaring to ±1.

Proposition 2.2. For each integer n ≥ 1, there are 22n−1 multicomplex
numbers squaring to 1 and 22n−1 squaring to −1.

Proof. By Proposition 2.1, it suffices to prove it for Un. We proceed by
induction on n. For n = 1, the set MC(1) is the set of complex numbers
and there are only two solutions to η2 = −1, namely i1 and −i1. This is
exactly 22n−1 for n = 1. Suppose that there are 22n−1 solutions for η2 = −1 in
MC(n). We will show that there are 22n solutions for η2 = −1 in MC(n+1).
Let η ∈ MC(n + 1) be written in its idempotent representation, that is,
η = ηen+1en+1 + ηen+1en+1, where ηen+1 , ηen+1 ∈ MC(n). Then, according to
(2.4), η is a solution to the equation η2 = −1 if and only if (ηen+1 , ηen+1) is
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a solution to the system of equations{
η2

en+1
= −1,

η2
en+1

= −1.

Since ηen+1 , ηen+1 ∈ MC(n), by the induction hypothesis there are 22n−1 solu-
tions to each equation in the system. Therefore, there are 22n−1 · 22n−1 = 22n

solutions to η2 = −1 in MC(n + 1). This ends the induction and the claim
is proved. □

It is possible to prove a similar statement for the set of multicomplex num-
ber η satisfying the equation η2 = η. Instead, we give an explicit bijection
between Hn and En to prove the next proposition.
Proposition 2.3. For each integer n ≥ 1, there are 22n−1 idempotent ele-
ments in MC(n).
Proof. If h ∈ Hn, then (1 + h

2

)2
= 1 + h

2 .

It follows that the map h 7→ (1 + h)/2 is well defined. It is also clearly a
bijection. □

An interesting corollary to the proofs of Proposition 2.2 and Proposition
2.3 is the following representation theorem for certain multicomplex num-
bers.
Corollary 2.4. Let η ∈ MC(n).

(i) If η2 = −1, then η can be written as
η =

∑
ε∈En

ηεε

where the components ηε ∈ {i1, −i1}.
(ii) If η2 = 1, then η can be written as

η =
∑

ε∈En

ηεε

where the components ηε ∈ {1, −1}.
(iii) If η2 = η, then η can be written as

η =
∑

ε∈En

ηεε

where the components ηε ∈ {0, 1}.
Proof. The result for numbers squaring to −1 is immediate. Then Part (ii)
follows from Proposition 2.1. Part (iii) follows from Proposition 2.3 and the
fact that 1 = ∑

ε∈En
ε. □
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3. Involutions preserving elementary units

We start by giving a precise definition of what we mean by an involution
on the set MC(n).
Definition 3.1. A function f : MC(n) → MC(n) is said to be an involution
if the following conditions are satisfied:

(a) f(f(η)) = η for any η ∈ MC(n);
(b) f(η + ζ) = f(η) + f(ζ) and f(λη) = λf(η) for any η, ζ ∈ MC(n) and

λ ∈ R;
(c) f(ηζ) = f(η)f(ζ) for any η, ζ ∈ MC(n).

If we take a closer look at our definition of the term “involution”, we
require that the function is a real-linear homomorphism which is its own
inverse. When we only require that f is invertible but not necessarily its
own inverse, we shall only say that f is a real-linear automorphism of MC(n).

Our focus is now on proving Theorem 1.1. The method of proof will be
quite different from the next sections. This comes from the fact that it is
hard to devise a workable condition to detect if an h ∈ Hn is an element
of I(n) based on the idempotent components of h. For this section, it will
be more useful to use the canonical representation (2.2) of a multicomplex
number.

If f is an involution, then for any multicomplex number η, we have
f(η) =

∑
i∈I(n)

ηif(i).

Since each i ∈ I(n)\{1} is a product of the units i1, i2, . . . , in and f is a
real-linear homomorphism, we obtain the following proposition.
Proposition 3.2. If f : MC(n) → MC(n) is an involution, then its values
are completely determined by its action on i1, i2, . . . , in.

Now, what are the possible values of each f(ik) for 1 ≤ k ≤ n? Since
f(ik) ∈ Un and here we restrict our attention to involutions preserving I(n),
f(ik) should be a product of an odd number of imaginary units i1, i2, . . ., in.
Therefore, an I(n)-preserving involution f of MC(n) can be characterized
by

f(ij) = i1
a1,j i2

a2,j · · · in
an,j (−1)an+1,j , 1 ≤ j ≤ n.

Furthermore, for 1 ≤ j ≤ n we have
−1 = f(−1) = f(i2

j ) = f(ij)2 = (−1)a1,j (−1)a2,j · · · (−1)an,j ,

which implies
n∑

k=1
ak,j ≡ 1 (mod 2), 1 ≤ j ≤ n.
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The first equality in the above chain of equalities comes from the fact that
f is, in particular, a ring homomorphism. In summary, we are trying to
find the number of functions f : MC(n) → MC(n) satisfying the following
conditions:

1) f(−1) = −1;
2) i2

j = −1 for 1 ≤ j ≤ n;
3) f(ijik) = f(ij)f(ik) for 1 ≤ j, k ≤ n;
4) f(f(ij)) = ij for 1 ≤ j ≤ n;
5) f(ij) = i1

a1,j i2
a2,j · · · in

an,j (−1)an+1,j for 1 ≤ j ≤ n;
6) a1,j, . . . , an+1,j ∈ {0, 1} and ∑n

k=1 ak,j ≡ 1 (mod 2) for 1 ≤ j ≤ n.
With this setup, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We will use a matrix representation to obtain the
number of involutions satisfying the previous description. A function f as
described by 1) to 6) above will be represented by the matrix

Af :=


a1,1 a1,2 . . . a1,n 0
a2,1 a2,2 . . . a2,n 0

... ... . . . ... ...
an,1 an,2 · · · an,n 0

an+1,1 an+1,2 · · · an+1,n 1

 .

The condition ∑n
k=1 ak,j ≡ 1 (mod 2) for 1 ≤ j ≤ n then translates to a

condition on the matrix Af as

(3.1)


a1,1 a1,2 . . . a1,n 0
a2,1 a2,2 . . . a2,n 0

... ... . . . ... ...
an,1 an,2 . . . an,n 0

an+1,1 an+1,2 . . . an+1,n 1



T 
1
1
1
1
0

 ≡


1
1
1
1
0

 (mod 2).

To simplify the notation, we will simply write A for Af . On the other
hand, the condition f(f(ij)) = ij, 1 ≤ j ≤ n, translates into
(3.2) A2 ≡ I (mod 2).
Our problem thus becomes the problem of enumerating matrices A with
{0, 1} entries and satisfying conditions (3.1) and (3.2).

We set X = A−I. Working with modulo 2, the equation A2 ≡ I (mod 2)
is equivalent to X2 ≡ 0 (mod 2). The problem now becomes enumerating
(n + 1) × (n + 1) matrices X such that

1) The entries of X are equal to 0 or 1;
2) X2 ≡ 0 (mod 2);
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3) The sum of each column of X is ≡ 0 (mod 2);
4) The right column of X has only zeros.

We denote by Y the submatrix of X obtained by omitting the right column
of X and its bottom row, that is,

Y =


a1,1 − 1 a1,2 . . . a1,n

a2,1 a2,2 − 1 . . . a2,n
... ... . . . ...

an,1 an,2 . . . an,n − 1

 .

The conditions on X imply the following conditions on Y :
1) The entries of Y are equal to 0 or 1;
2) Y 2 ≡ 0 (mod 2);
3) The sum of each column of Y is ≡ 0 (mod 2).

We denote by k the dimension of the kernel of Y , that is, k := dim(ker(Y )).
Because Y 2 = 0, we have

(3.3) k ≥ n/2.

Observe that the dimension of the kernel of Y is equal to the dimension of
the kernel of Y ⊤. It will be easier to work with this transpose.

We use the notation e⃗ := (1, 1, . . . , 1)⊤. Condition 3 on the matrix Y is
equivalent to

e⃗ ∈ ker(Y ⊤).
For a fixed value of k, the number of ways of choosing ker(Y ⊤) with the
restriction that e⃗ ∈ ker(Y ⊤) is given by

(3.4) B(k, n) :=
k−1∏
j=1

2n − 2j

2k − 2j
,

with the convention that B(k, n) = 1 for k = 0, 1. To see this, first note that
the number of ways of choosing an ordered sequence of k linearly independent
vectors (with e⃗ as the first vector of the sequence) is given by

(3.5)
k−1∏
j=1

(2n − 2j),

since when choosing a new vector, one cannot choose any linear combination
of previously chosen vectors. Now, many choices of vector sequences (or
basis choices) will describe the same subspace. Given a basis of linearly
independent vectors, the number of ways of choosing a basis that will span
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the same subspace (under the condition that e⃗ is the first vector of the
ordered basis) is given by

(3.6)
k−1∏
j=1

(2k − 2j).

Equality (3.4) follows from (3.5) and (3.6).
Now, suppose that the kernel ker(Y ⊤) has been chosen. Let k again be the

dimension of the kernel of Y ⊤. Let u⃗1, u⃗2, . . . u⃗k be a vector basis of ker(Y ⊤).
Let v⃗1, v⃗2, . . . , v⃗n−k be vectors such that u⃗1, u⃗2, . . . u⃗k, v⃗1, v⃗2, . . . , v⃗n−k is a vec-
tor basis of Zn

2 . We will now find the number of ways of choosing Ran (Y ⊤),
the range of Y ⊤.

Since Y 2 ≡ 0 (mod 2), we deduce that (Y ⊤)2 ≡ 0 (mod 2). This last
identity implies that

(Y ⊤)2v⃗j = 0⃗, 1 ≤ j ≤ n − k,

and thus
Y ⊤v⃗j ∈ ker(Y ⊤), 1 ≤ j ≤ n − k.

We therefore have

Y ⊤v⃗j =
k∑

s=1
rs,ju⃗s,

where rs,j ∈ {0, 1} and 1 ≤ j ≤ n − k. The number of ways to choose the
value of Y ⊤v⃗1 is given by

2k − 1.

This comes from the fact that v⃗1 ̸∈ ker(Y ⊤) and therefore the rs,j cannot all
be zero. One can now choose the values of Y ⊤v⃗2, Y ⊤v⃗3, . . . , Y ⊤v⃗n−k under
the restriction that the vectors Y ⊤v⃗j must be linearly independent. To see
why these vectors must be linearly independent, suppose that w⃗ is a linear
combination of the vectors v⃗j such that Y ⊤w⃗ = 0⃗. This implies w⃗ ∈ ker(Y ⊤).
We thus have exhibited a vector w⃗ that can be expressed both as a linear
combination of the vectors u⃗j and as a linear combination of the vectors v⃗j.
This contradicts the fact that u⃗1, u⃗2, . . . u⃗k, v⃗1, v⃗2, . . . , v⃗n−k is a basis of Zn

2 .
This constraint of linear independence implies that the number of ways of
choosing the vector v⃗j is equal to 2k − 2j−1 for 1 ≤ j ≤ n − k. We conclude
that the number of ways of choosing the image of Y ⊤ is given by

(3.7) D(k, n) =
n−k−1∏

j=0
(2k − 2j).

Putting everything together, the number of ways of choosing the matrix
Y ⊤, or equivalently the number of ways of choosing the matrix Y , is given
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by

B(k, n)D(k, n) =
k−1∏
j=1

2n − 2j

2k − 2j

n−k−1∏
j=0

(2k − 2j).

Finally, to fully specify the matrix X, one has to specify its bottom row
(describing the signs in the involution). Let x1, x2, . . ., xn, xn+1 be the
rows of the matrix X. The condition X2 ≡ 0 (mod 2) can be written, after
transposing, as (X⊤)2 ≡ 0 (mod 2). Therefore, we obtain the following
conditions:

X⊤x⊤
j ≡ 0 (mod 2)

for every j = 1, 2, . . . , n+1. In particular, with j = n+1, we get X⊤x⊤
n+1 ≡ 0

(mod 2), which can be rewritten as
a1,1 − 1 a2,1 . . . an,1

a1,2 a2,2 − 1 . . . an,2
... ... . . . ...

a1,n a2,n . . . an,n − 1




an+1,1
an+1,2

...
an+1,n

 ≡ 0 (mod 2).

Notice that the matrix in the previous equation is precisely Y ⊤. Hence the
vector

w⃗ :=


an+1,1
an+1,2

...
an+1,n


must be in the kernel of the matrix Y ⊤. If the dimension of the kernel of
Y ⊤ is equal to k, then the number of ways of choosing the components of w⃗
is equal to

(3.8) 2k.

This last number comes from the fact that w⃗ = ∑k
s=1 rsu⃗k with rs ∈ {0, 1}.

From equations (3.3), (3.4), (3.7), and (3.8), we conclude that the number
of involutions satisfying (1) to (6) is equal to

∑
n/2≤k≤n

D(k, n)B(k, n)2k =
∑

n/2≤k≤n

( k−1∏
j=1

2n − 2j

2k − 2j

)( n−k−1∏
j=0

2k − 2j
)

2k.

This completes the proof. □
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3.1. An algorithm. The proof of Theorem 1.1 suggests a way to generate
a list of I(n)-preserving involutions for a fixed value of n.

1) Fix a value of k and loop over the values of k ∈ [n/2, n].
2) Generate a basis u⃗1, . . . u⃗k (including e⃗) of all subspaces of dimension

k of Zn
2 .

3) For each basis in the list generated in step 2, find a set of vectors
v⃗1, . . . , v⃗n−k so that the vectors u⃗1, . . . , u⃗k, v⃗1, . . . , v⃗n−k form a basis
of Zn

2 .
4) For each vector v⃗j, choose the image of v⃗j as a linear combination of

the vectors u⃗j. We denote this image by s⃗j.
5) Obtain the matrix Y ⊤ as in the above proof by solving

Y ⊤[u⃗1, . . . , u⃗k, v⃗1, . . . , v⃗n−k] = [⃗0, . . . , 0⃗, s⃗1, . . . , s⃗n−k].
6) Generate a list of involutions by looping over all possibilities for

the choice of the sign vector associated to Y , fully specifying in the
matrix X in the above proof.

Here is a sample of I(3)-preserving involutions. To the best of the authors’
knowledge, these involutions do not appear in any of the references using
such involutions in their work.

1) f(η) = η1 − ηi1i1 − ηi2i2 + ηi1i2i1i2 + ηi1i2i3i3 + ηi2i3i1i3 + ηi1i3i2i3 +
ηi3i1i2i3;

2) f(η) = η1 − ηi1i1 − ηi2i2 + ηi1i2i1i2 − ηi1i2i3i3 − ηi2i3i1i3 − ηi1i3i2i3 −
ηi3i1i2i3;

3) f(η) = η1 + ηi1i1 + ηi3i2 + ηi1i3i1i2 + ηi2i3 + ηi1i2i1i3 + ηi2i3i2i3 +
ηi1i2i3i1i2i3;

4) f(η) = η1 + ηi1i1 − ηi3i2 − ηi1i3i1i2 − ηi2i3 − ηi1i3i1i3 + ηi2i3i2i3 +
ηi1i2i3i1i2i3.

4. A Bijection With Signed Permutations

The primarily goal of this section is to prove Theorem 1.2. We first need
to show auxiliary results pertaining to multicomplex numbers.

4.1. Auxiliary Results. Recall that for any η ∈ MC(n), we can write

η =
∑

ε∈En

ηεε,

where ηε ∈ MC(1). Write ηε = xε + i1yε with xε , yε ∈ R. Therefore, for a
real-linear ring homomorphism f : MC(n) → MC(n), we have

f(η) =
∑

ε∈En

xεf(ε) + f(i1)
∑

ε∈En

yεf(ε).
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As an immediate consequence, we obtain the following proposition.

Proposition 4.1. An involution of MC(n) is completely determined by its
value on i1 and on the set En.

To choose the value f(i1), a key ingredient is the following observation.

Lemma 4.2. Let f be an involution of MC(n). Then the following asser-
tions hold.

(i) Given a multicomplex number η such that η2 = −1, there exists a
unique h ∈ Hn such that η = i1h.

(ii) f(i1) = i1h for a choice of h ∈ Hn that depends on f .

Proof. To prove (i), apply Proposition 2.1 with u = i1. Part (ii) follows from
(i) and the fact that f(i1)2 = −1. □

Now we shall see how f acts on En. Let η be an element of En. Define
the set

orth(η) = {ζ : ζ2 = ζ, ηζ = 0},

that is, the set of idempotent elements orthogonal to η. We write
(4.1) η =

∑
ε∈En

ηεε

and v(η) for the number of coefficients equal to 0 in the right-hand side of
(4.1). If the number ζ is such that ζ2 = ζ and ζ = ∑

ε∈En
ζεε, then the

equality ζη = 0 is equivalent to ηεζε = 0 for all ε ∈ En. If ηε = 0, ζε can
take the values 0 or 1, while if ηε = 1, ζε must be equal to 0. We thus have

1) #orth(η) = 2v(η);
2) #orth(0) = 22n−1 ;
3) If ε ∈ En, then #orth(ε) = 22n−1−1;
4) If η ̸= 0 and η ̸∈ En, then #orth(η) < 22n−1−1.

In the above statements, the notation #A means the cardinality of the set A.
A second key ingredient in proving our main result is the following lemma
describing the action of f on the elements of En.

Lemma 4.3. Let f be a bijection from MC(n) to MC(n) such that f(0) = 0
and f(ηζ) = f(η)f(ζ) for all η, ζ ∈ MC(n). Let η be such that η2 = η. Then

(i) (f(η))2 = f(η);
(ii) #orth(f(η)) = #orth(η);

(iii) If ε ∈ En, then f(ε) ∈ En.

Proof. The first part of the lemma follows directly from the fact that
f(η) = f(η2) = f(η)f(η).



COUNTING INVOLUTIONS ON MULTICOMPLEX SPACES 17

To prove part (ii), assume that ζ ∈ orth(η). We then have

f(ζ)f(η) = f(ζη) = f(0) = 0.

Since f is a bijection, the converse is also true, that is, if ζ is such that
f(ζ) ∈ orth(f(η)), then ζ ∈ orth(η). Therefore, ζ ∈ orth(η) if and only if
f(ζ) ∈ orth(f(η)). This, together with the fact that f(0) = 0, implies that

#orth(f(η)) = #orth(η).

Suppose now that ε ∈ En. Since f(0) = 0 and f is bijective, we have
f(ε) ̸= 0. This implies

22n−1−1 = #orth(ε) = #orth(f(ε)) = 2v(f(ε))

and thus v(f(ε)) = 2n−1 − 1. We deduce f(ε) ∈ En. □

Knowing how f acts on i1 and on En, we can show the following.

Lemma 4.4. Write εj , 1 ≤ j ≤ 2n−1, for the elements of En. Suppose that
f(i1) = i1h with

h =
2n−1∑
j=1

ηεj
εj .

Suppose that f(εj) = εk. Then

f(i1εj) = i1ηεk
εk.(4.2)

Furthermore, the function f is completely determined by its action on the
set i1En.

Proof. The formula (4.2) follows from direct computation and from the or-
thogonality of the elements of the set En.

Suppose that we know the action of f on the set i1En. Then, from the
identity

f(εk) = −
(
f(i1εk)

)2
,

we can recover the value of f(εk). The identity

f(i1) =
2n−1∑
k=1

f(i1εk)

allows us to recover the value of f(i1). The result then follows from Propo-
sition 4.1. □
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4.2. Proof of Theorem 1.2. For a real number a, we define sgn(a) = 1
if a > 0, sgn(0) = 0 and sgn(a) = −1 if a < 0. Also an alternative
description of Bn, which is more useful to us, can be given as followed. Any
signed permutation π can be seen as a bijection of {1, . . . , n, −1, . . . , −n}
to itself such that π(−i) = −π(i) and −(−i) = i for i = 1, . . . , n. We
have identified the bar with the − sign in the previous description of a
signed involution. The goal of this section is to prove the following result
establishes a connection between real-linear automorphisms of MC(n) and
B2n−1 . We can then deduce a number of results from this connection.

Proof of Theorem 1.2. Let f be a real-linear automorphism of MC(n). From
Lemma 4.4, f is determined by its action on the set i1En and f(i1εj) =
i1ηεk

εk, with ηεk
∈ {−1, 1}. To such a function f we can associate the signed

permutation π that satisfies π(j) = ηεk
k. Conversely, for a given signed

permutation π, we can define the function f by f(i1εj) = i1sgn(π(j))ε|π(j)|.
It is clear from our construction that this bijection maps the identity to the
identity and is compatible with composition. □

Using this bijection, we obtain the following corollary.

Corollary 4.5. For each integer n ≥ 1, there are 22n−1(2n−1)! real-linear
automorphisms of MC(n).

Proof. For a given permutation of {1, . . . , n}, we can define a signed permu-
tation by choosing whether we put a bar or not over each entry. It is thus
obvious that #Bn = 2n · n!. The result follows. □

A more direct way to interpret the previous formula for the number of
real-linear automorphisms of MC(n) corresponds to choosing a value for
f(i1) and a permutation of En. There are (2n−1)! such permutations, and
since f(i1)2 = −1, from Proposition 2.2 there are 22n−1 possible values for
f(i1).

5. Characterization of Involutions of Multicomplex numbers

In this section, we derive the following result on the number of involutions
of MC(n).

Corollary 5.1. For n ≥ 1 a positive integer, write F (n) for the number of
involutions of MC(n).

(i) The following formula holds:

F (n) = (2n−1)!
⌊2n−2⌋∑

k=0

22n−1−2k

k!(2n−1 − 2k)! .
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(ii) If g(1) = 2, g(2) = 6, and

g(n) = 2g(n − 1) + (2n − 2)g(n − 2), n ≥ 3,

then F (n) = g(2n−1).
(iii) The asymptotics

F (n) ∼
(2n

e

)2n−2
e2n/2

√
2e

hold as n → ∞.

We first show how to obtain the above result using Theorem 1.2. We then
present a more direct alternative approach to obtain the formula for the
number of involutions of MC(n) in Corollary 5.1(i), using a counting argu-
ment. The main reason we choose to include this second proof is that this
approach gives more insight into the nature of the multicomplex numbers
since it relies on representation theorems for important subrings of MC(n).

5.1. Proof of Corollary 5.1. The formula in (i) and the asymptotic for-
mula in (iii) follow from known results for signed involutions (see [5] and
[24], respectively).

For (ii), by Theorem 1.2 it suffices to prove that g(n) counts the number
of signed involutions of length n. But π ∈ Bn either fixes n and sends it to
n or −n, or it sends n to j or −j, where j ∈ {1, 2, . . . , n − 1}. Establishing
the base cases g(1) and g(2) is straightforward. □

5.2. Counting involutions again. Recall from Lemma 4.2 that f(i1) = i1h
for a unique h ∈ Hn that depends on f . Assuming that f is an involution,
the next result gives a way to choose h.

Lemma 5.2. Let f be an involution of MC(n) for n ≥ 1. Suppose that
f(i1) = i1h for some h ∈ Hn. Then, we have f(h) = h.

Proof. Apply f on f(i1) = i1h to get

i1 = f(i1)f(h).

Using again f(i1) = i1h, we see that

i1 = i1hf(h).(5.1)

Since i1 is invertible in MC(n), we obtain 1 = hf(h). Multiplying by h, we
therefore obtain h = f(h). □
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Based on this last lemma, we introduce the sets

Yn :=

 ∑
h∈Hn

rhh : rh ∈ R

 and fix(f) := {η ∈ Yn : f(η) = η}.(5.2)

It is easy to see that Yn is a vector subspace and a subring of MC(n) con-
taining Hn and fix(f) is a vector subspace and a subring of Yn if f is an
involution. We can now prove the formula for F (n) again.

Second proof of Corollary 5.1(i). Let f be an involution of MC(n). We still
have that f is determined by its action on i1 and on En, and that it induces
a permutation of the elements of this set. For n = 1, we already know that
there are 2 involutions on the complex space. This corresponds to what is
computed with our formula.

For n ≥ 2, since f is an involution, the permutation induced by f should
contain cycles of length 2 (transpositions) and should fix some elements of
En. Let k ∈ {0, 1, . . . , 2n−2}. The number of permutations of a set of 2n−1

elements with k transpositions and 2n−1 − 2k fixed elements is given by

(2n−1)!
2kk!(2n−1 − 2k)! .

We now need to find the possible values of f(i1). We know that

f(i1) = i1h

for some choice of h ∈ fix(f) by Lemma 4.2 and Lemma 5.2. Since fix(f) is
a subring of Yn and f is real-linear, it is sufficient to know the coefficients of
h in its representation with respect to a basis of fix(f). We will find such a
basis. Denote the elements of En by ε1, . . ., ε2n−1 . Suppose that f is given
by

f(εj1) = εj2 , f(εj3) = εj4 , . . . , f(εj2k−1) = ε2k

and f(εj2k+1) = εj2k+1 , . . ., f(εj2n−1 ) = εj2n−1 . From Corollary 2.4(ii), we
can write

h =
2n−1∑
ℓ=1

cℓεjℓ

with cℓ ∈ {−1, 1}. We then have

f(h) =
2k−1∑
ℓ=1

(cℓ+1εjℓ
+ cℓεjℓ+1) +

2n−1∑
ℓ=2k+1

cℓεjℓ
.
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It follows that f(h) = h if and only if c1 = c2, c3 = c4, . . . , c2k−1 = c2k.
This is equivalent to stating that

fix(f) = spanR{(εj1 + εj2), . . . , (εj2k−1 + εj2k
), εj2k+1 , . . . , εj2n−1 }.

We deduce that h should be of the form

h =
2k−1∑
ℓ=1
ℓ odd

aℓ(εjℓ
+ εjℓ+1) +

2n−1∑
ℓ=2ℓ+1

aℓεjℓ
,

with aℓ ∈ {−1, 1}. This implies that the number of ways to choose h is

22n−1−k.

Finally, summing from k = 0 to k = 2n−2, we obtain that the number of
involutions of MC(n) for n ≥ 2 is

2n−2∑
k=0

22n−1−k(2n−1)!
2kk!(2n−1 − 2k)! = (2n−1)!

2n−2∑
k=0

22n−1−2k

k!(2n−1 − 2k)! .

This completes the proof. □

6. Higher Order Involutions

In the previous section, we investigated involutions, functions f such that
f (2) = Id. It is natural to ask what happens when 2 is replaced by an
arbitrary positive integer r ≥ 2.

We write Fr(n) for the number of real-linear automorphisms of MC(n)
such that f (r) = Id. From Theorem 1.2, the set of real-linear automorphisms
f of MC(n) such that f (r) = Id can be identified with the set of signed
permutations π ∈ B2n−1 such that π(r) = Id. We will thus enumerate such
signed permutations in order to prove our next result.

Theorem 6.1. Let p > 2 be a prime number. The number of p-involutions
of the multicomplex numbers MC(n) with n ≥ 1 is given by

Fp(n) = (2n−1)!
⌊2n−1/p⌋∑

k=0

2(p−1)k

k!pk(2n−1 − pk)! .

More generally, if r > 1 is a positive integer, the number of r-involutions of
the multicomplex numbers MC(n) with n ≥ 1 is given by

Fr(n) = 22n−1 ∑
σ∈S2n−1,r

( ∏
k|r, r/k is odd

1
2cyck(σ)

)
.
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Proof. For a signed permutation π, we let σ = un(π) stand for the corre-
sponding unsigned permutation. Clearly, π(r) = Id implies σ(r) = Id while
the converse is not true. Recall that Sn,t stands for the set of permutations
σ of n elements such that σ(t) = Id. We have directly

Fr(n) =
∑

σ∈S2n−1,r

#
{
π ∈ B2n−1 : un(π) = σ, π(r) = Id

}
.

The cardinalities of the sets in the above sum correspond to the number
of ways of choosing the signs of the signed permutations. Any unsigned
permutation σ can be written as a product of disjoint cycles. Under the
assumption that σ(r) = Id, we have that the lengths of these cycles are
divisors of r. Assume that σ has a cycle of length s and assume without
loss of generality that this cycle is (1, 2, . . . , s). Let c1, c2, . . . , cs be the signs
associated to the elements 1, 2, . . . , s in the signed permutation π. We have

π(r)(j) = (c1 · · · cs)r/sj, 1 ≤ j ≤ s,

and thus

π(r)(j) = j for 1 ≤ j ≤ s ⇐⇒ (c1 · · · cs)r/s = 1.

If r/s is even, then the signs c1, . . . , cs can be chosen arbitrarily and the
number of possible choices is equal to 2s. On the other hand, if r/s is odd
then c1 · · · cs must be equal to 1. The number of possible choices in this case
is thus 2s−1. For a given unsigned permutation σ, we denote by cycs(σ) the
number of disjoint cycles of length s in σ. Hence, the cardinality of the set{
π ∈ B2n−1 : un(π) = σ, π(r) = Id

}
is∏

s|r,r/s is even
2s·cycs(σ) ∏

s|r,r/s is odd
2(s−1)cycs(σ).(6.1)

By noticing that for a fixed permutation σ, ∑
s|r s · cycs(σ) = 2n−1, the last

expression can be rewritten as

22n−1 ∏
s|r,r/s is odd

1
2cycs(σ) .(6.2)

Summing over all permutations σ ∈ S2n−1,r, we get

Fr(n) = 22n−1 ∑
σ∈S2n−1,r

∏
s|r,r/s is odd

1
2cycs(σ) .

When r = p is an odd prime, expression (6.1) simplifies to

(6.3) 2(1−1)cyc1(σ) · 2(p−1)cycp(σ) = 2(p−1)cycp(σ).
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The number of permutations of 2n−1 elements with k cycles of length p and
2n−1 − pk fixed elements is given by

(6.4) (2n−1)!
pkk!(2n−1 − pk)! .

From (6.3) and (6.4), we conclude that for an odd prime p,

Fp(n) = (2n−1)!
⌊2n−1/p⌋∑

k=0

2k(p−1)

pkk!(2n−1 − pk)! ,

and this concludes the proof. □

Note that the above argument does not work when r = 2, although the
expression (6.4) still holds. In this case, (6.2) simplifies to

22n−1 1
2cyc2(σ) = 22n−1−k,(6.5)

where k is the number of cycles of length 2 in the unsigned permutation σ.
From (6.4) and (6.5), we therefore obtain

F (n) = F2(n) = (2n−1)!
2n−2∑
k=0

22n−1−k

k!2k(2n−1 − 2k)! = (2n−1)!
2n−2∑
k=0

22n−1−2k

k!(2n−1 − 2k)! ,

as before.

6.1. Generating r-Involutions. The proof of Corollary 6.1 combined with
the explicit bijection in the proof of Theorem 1.2 gives a way to generate the
r-involutions of MC(n), for r ≥ 2. Here, we describe this method (which is
a brute force method).

1) Select a permutation σ ∈ S2n−1,r of the symbols {1, 2, . . . , 2n−1}.
2) Generate all the possible sign permutations π by considering all the

possible sign insertions in σ.
3) For a given sign permutation in the last step, check if π(r) = Id.
4) Generate the r-involution of MC(n) by setting

f(i1εj) = i1sgn(π(j))ε|π(j)|.

Using this method we can generate an example of a 6-involution of the space
MC(3) that do not preserve the set I(3).

Let ε1 = (1 − i1i2 − i1i3 − i2i3)/4, ε2 = (1 + i1i2 + i1i3 − i2i3)/4, ε3 =
(1 − i1i2 + i1i3 + i2i3)/4, and ε4 = (1 + i1i2 − i1i3 + i2i3)/4 and define the
action of f as followed:

f(i1ε1) = i1ε3, f(i1ε2) = i1(−1)ε2, f(i1ε3) = i1ε4, f(i1ε4) = i1ε1.
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This map is a 6-involution. It comes from the following signed permutation
(using the bar notation):

π = 3241.

Note that we could create a 3-involution by using the unsigned permutation
σ = 3241.

We can rewrite the above 6-involution f using the elementary units (canon-
ical representation) as follows:

f(η) = η1 + i1(ηi1i2i3 + ηi1 + ηi2 + ηi3)/2 + i2(−ηi1i2i3 + ηi1 − ηi2 + ηi3)/2
+ i1i2ηi1i3 + i3(ηi1i2i3 + ηi1 − ηi2 − ηi3)/2 − i1i3ηi2i3 − i2i3ηi1i2

+ i1i2i3(−ηi1i2i3 + ηi1 + ηi2 − ηi3)/2,

where
η = η1 + i1ηi1 + i2ηi2 + i1i2ηi1i2 + i3ηi3 + i1i3ηi1i3 + i2i3ηi2i3 + i1i2i3ηi1i2i3 .

This 6-involution is not I(3)-preserving because it sends some of the elemen-
tary units in I(3) to units in U3\I(3). From the expression above, we see
that

f(i1) = i1 + i2 + i3 + i1i2i3

2 , f(i2) = i1 − i2 − i3 + i1i2i3

2 ,

and
f(i3) = i1 + i2 − i3 − i1i2i3

2 .
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