Home Research Teaching Tetrabrot EN FR

Research Interests

My research interests are the frontier of Complex Analysis, Hypercomplex analysis, Operator Theory, and Functional Analysis. More precisely, I am interested in the following topics:

  • Approximation theory:
    • Polynomial approximations in functions spaces (de Branges-Rovnyak spaces, Weighted Dirichlet spaces, Bergman spaces).
    • Approximations by kernels in reproducing kernel Hilbert spaces (RKHS).
    • Mathematics of machine learning.
  • Geometric Function Theory:
    • Characterization of conformal welding.
    • Polynomial Lemniscates and conformal welding.
    • Holomorphic Dynamics.
  • Hypercomplex Analysis:
    • Multicomplex analysis.
    • Dynamics in higher dimensions (Mandelbrot set, Julia sets).
    • Generation of 3D fractals.

I am currently:

Submitted articles

  • N. Doyon, P.-0. Parisé & W. Verrault. Counting Involutions on Multicomplex Spaces.
    Submitted in July 2025. [ArXiv]
  • K. Lazebnik, P.-0. Parisé & M. Younsi. Rational Lemniscates and the Matching Problem.
    Submitted in June 2025. [PDF]
  • Q. Charles & P.-O. Parisé. Classification of Principle 3D Slices of Filled-in Julia Sets in Multicomplex Spaces.
    Submitted in Mai 2025. [ArXiv]

Published articles (Total: 12)

  • 2025:
    • J.-S. Dessureault, R. Lamontagne, P.-O. Parisé. The ethics of Creating Artificial Superintelligence: A Global Risk Perspective.
      AI and Ethics, published online. (2025) [ Open Access]
  • 2024:
    • P.-O. Parisé & T. Ransford. On the Divergence of Taylor Series in de Branges-Rovnyak Spaces.
      PAMS, Series B, Vol. 11, pp.126-132. (2024) [Open Access]
    • P.-O. Parisé. Kernel-Summability Methods and the Silverman-Toeplitz Theorem.
      Recent progress in function theory and operator theory, AMS Contemporary Mathematics series, 799. (2024). [DOI, arXiv]
  • 2022:
    • J. Mashreghi, P.-O. Parisé & T. Ransford. Power-series summability methods in de Branges-Rovnyak spaces.
      Integral Equations and Operator Thoery, 94 (20). (2022) [ DOI, arXiv]
    • P. Drouin & P.-O. Parisé. Un problème de rendez-vous.
      Bulletin de l'AMQ, Vol. 61, no. 4, 14p. (2022)
  • 2021:
    • J. Mashreghi, P.-O. Parisé & T. Ransford. Failure of approximation of odd functions by odd polynomials.
      Constr Approx., Published online. (2021) [arXiv]
    • J. Mashreghi, P.-O. Parisé & T. Ransford. Cesàro summability of Taylor series in weighted Dirichlet spaces.
      Complex Analysis and Operator Theory, Vol. 15 (7). (2021) [DOI, arXiv]
  • 2019:
    • G. Brouillette, P.-O. Parisé & D. Rochon. Tricomplex Distance Estimation for Filled-in Julia Sets and Multibrot Sets.
      IJBC, Vol. 29 (6), 15pp. (2019) [arXiv]
  • 2017:
    • P.-O. Parisé. Dans l'imaginaire de Berhnard Riemann.
      Bulletin de l'AMQ, Vol. 57, no. 1, pp. 33-50. (2017)
    • P.-O. Parisé & T. Ransford & D. Rochon. Tricomplex Dynamical Systems Generated by Polynomial of Even Degree.
      CMSIM, Vol. 1, pp.38-49. (2017) [arXiv]
    • P.-O. Parisé & D. Rochon. Tricomplex Dynamical Systems Generated by Polynomials of Odd Degree.
      Fractals, Vol. 25 (3), 11 pp. (2017) [arXiv]
  • 2015:
    • P.-O. Parisé & D.Rochon. A Study of Dynamics of the Tricomplex Polynomials ηp+c.
      Non. Lin. Dyn., Vol. 82 (1), pp.157-171 (2015) [arXiv]

Masters' Students

  • 2025-: Sadio Cisse.
    Project title: Clustering and Deep Clustering: Applications in Artificial Intelligent.
    Financial Support: TBA.
    Co-supervisor: Nadia Ghazzali.

Undergraduate Students

  • 2025: Stéphanie Couture.
    Project title: Gibbs phenomena and summability theory.
    Financial Support: NSERC Undergraduate Student Research Awards.
    Research report: In progress.
  • 2024: Quentin Charles.
    Project title: Multicomplex Numbers and 3D slices of Filled-in Julia Sets.
    Financial Support: Undergradate Research Opportunities Program (UROP).
    Research report: submitted.
  • 2022: Trey Summers (Co-supervision).
    Project title: Spectral Analysis of Tsunamis in Hawaii, Using Real Time Observations From the Pacific Islands Ocean Observing System.
    Financial Support: None, part of the student's mendatory project for graduating from the Oceanography program.
    Research report: Accepted to the journal Oceanography.
  • 2021: Jérôme Côté.
    Project title: The Cesàro method applied to the Mandelbrot set.
    Financial Support: Institut des Sciences Mathématiques (ISM).
    Research report (In French): Jerome Cote research report.
  • 2020: Philippe Drouin.
    Project Title: Rendezvous Problems on symmetric complete graphs.
    Financial Support: Institut des Sciences Mathématiques (ISM).
    Research report: Work done during this project was published in the Bulletin de l'AMQ (see the published articles section above).

Miscellaneous

  • Involutions of Bicomplex Numbers: Preliminary work on involutions of Bicomplex numbers (2022).
  • Fractal Achemy - Metatronbrot: Video realized with the software 3D Mandelbrot Voyager showing transitions between different 3D slices of the Tricomplex Mandelbrot set. Created by P.-O. Parisé & D. Rochon (2017). Uploaded on the YouTube platform and video has 112K views.